Skip to main content

Advertisement

Log in

Human health risk assessment related to contaminated land: state of the art

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Exposure of humans to contaminants from contaminated land may result in many types of health damage ranging from relatively innocent symptoms such as skin eruption or nausea, on up to cancer or even death. Human health protection is generally considered as a major protection target. State-of-the-art possibilities and limitations of human health risk assessment tools are described in this paper. Human health risk assessment includes two different activities, i.e. the exposure assessment and the hazard assessment. The combination of these is called the risk characterization, which results in an appraisal of the contaminated land. Exposure assessment covers a smart combination of calculations, using exposure models, and measurements in contact media and body liquids and tissue (biomonitoring). Regarding the time frame represented by exposure estimates, biomonitoring generally relates to exposure history, measurements in contact media to actual exposures, while exposure calculations enable a focus on exposure in future situations. The hazard assessment, which is different for contaminants with or without a threshold for effects, results in a critical exposure value. Good human health risk assessment practice accounts for tiered approaches and multiple lines of evidence. Specific attention is given here to phenomena such as the time factor in human health risk assessment, suitability for the local situation, background exposure, combined exposure and harmonization of human health risk assessment tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Pica is an eating disorder, mostly by children, characterized by an appetite for non-nutritive materials, including soils, which is not part of any cultural practice.

  2. Geophagy is the culturally driven practice of eating soil materials, most often in rural or preindustrial societies in Africa and Asia, in particular among children and pregnant women, partly as nutrient supplement.

  3. Maximal Values are used to (1) manage the reuse of soil material after transport and (2) set land use-specific remediation objectives for soil in case of soil remediation.

  4. Exceeding the Intervention Value implies a ‘seriously contaminated soil’ for which remediation is in principle mandatory, but first the urgency of remediation has to be determined.

References

  • Abreu, L. D. V., & Johnson, P. C. (2005). Effect of vapor source-building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model. Environmental Science and Technology, 39(12), 4550–4561.

    Article  CAS  Google Scholar 

  • Abreu, L. D. V., & Johnson, P. C. (2006). Simulating the effect of aerobic biodegradation on soil vapor intrusion into buildings: Influence of degradation rate, source concentration, and depth. Environmental Science and Technology, 40(7), 2304–2315.

    Article  CAS  Google Scholar 

  • Alexander, H., Checkoway, H., Van Netten, C., Muller, C. H., Ewers, T. G., Kaufman, J. D., et al. (1996). Semen quality of men employed at a lead smelter. Occupational and Environmental Medicine, 53, 411–416.

    Article  CAS  Google Scholar 

  • Almeida, S. M., Prio, C. A., Freitas, M. C., Reis, M. A., & Trancoso, M. A. (2005). Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmospheric Environment, 39, 3127–3138.

    Article  CAS  Google Scholar 

  • ATSDR. (2010). Lead toxicity. Case studies in environmental medicine (CSEM). Agency for Toxic Substances and Disease Registry, 15 August 2010.

  • Bachmann, G., Oltmanns, J., Konietzka, R., & Schneider, K. (1999). Calculation of Screening values for the assessment of historical soil pollution (in German). Berlin: Umweltbundesamt, Erich Schmidt Verlag.

    Google Scholar 

  • BARGE. (2014). http://www.bgs.ac.uk/barge/ubm.html. Accessed August 18, 2014.

  • Bierkens, J., Van Holderbeke, M., Cornelis, C., & Torfs, R. (2011). Exposure through soil and dust ingestion. In F. A. Swartjes (Ed.), Dealing with contaminated sites. From theory towards practical application (1st ed., Vol. 1, pp. 261–286). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bradley, M., Patterson, B. M., & Davis, G. B. (2009). Quantification of vapor intrusion pathways into a slab-on-ground building under varying environmental conditions. Environmental Science and Technology, 43(3), 650–656. doi:10.1021/es801334x.

    Article  Google Scholar 

  • Brusick, D. J. (1999). Genetic toxicology. In H. Marquardt, S. G. Schäfer, R. McClellan, & F. Welsch (Eds.), Toxicology. Waltham: Academic Press.

    Google Scholar 

  • Budd, P., Montgomery, J., Evans, J., & Trickett, M. (2004). Human lead exposure in England from approximately 5500 BP to the 16th century, AD. The Science of The Total Environment, 318(1–3), 45–58.

    Article  CAS  Google Scholar 

  • Calabrese, E. J., Stanek, E. J., Pekow, P., & Barnes, R. M. (1997). Soil ingestion estimates for children residing on a superfund site. Ecotoxicology and Environmental Safety, 36, 258–268.

    Article  CAS  Google Scholar 

  • Carlon, C., & Swartjes, F. (2007). Analysis of variability and reasons of differences. In Carlon (Ed.), Derivation methods of soil screening values in Europe. A review of national procedures towards harmonisation opportunities. JRC PUBSY 7123, HERACLES. European Commission Joint Research Centre, Ispra.

  • Cave, M. R., Wragg, J., Denys, S., Jondreville, C., & Feidt, C. (2011). Oral bioavailability. In F. A. Swartjes (Ed.), Dealing with contaminated sites. From theory towards practical application (1st ed., Vol. 1, pp. 287–324). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Cetin, E., Odabasi, M., & Seyfioglu, R. (2003). Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. The Science of the Total Environment, 312(1–3), 103–112.

    Article  CAS  Google Scholar 

  • Cornelis, C., Provoost, J., Joris, I., De Raeymaecker, B., De Ridder, K., Lefebre, et al. (2006). Evaluation of the Swedish guideline values for contaminated sites—Cadmium and polycyclic aromatic hydrocarbons. Vito-report 2006/IMS/R/390, November 2006.

  • Cornelis, C., & Swartjes, F. A. (2008). Development of a harmonized procedure fort the assessment of human health risks related to soil contamination in the Kempen region (in Dutch). Final report. OVAM report D/2008/5024/120, BeNeKempen project, June 2008.

  • Cox, S. F., Chelliah, M. C. M., McKinley, J. M., Palmer, S., Ofterdinger, U., Young, M. E., et al. (2013). The importance of solid-phase distribution on the oral bioaccessibility of Ni and Cr in soils overlying Palaeogene basalt lavas, Northern Ireland. Environmental Geochemistry and Health, 35, 553–567.

    Article  CAS  Google Scholar 

  • Denys, S., Caboche, J., Tack, K., Rychen, G., Wragg, J., Cave, M., et al. (2012). In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science and Technology, 46(11), 6252–6260.

    Article  CAS  Google Scholar 

  • EFSA. (2005). Opinion of the scientific committee on a request from EFSA related to A harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. The EFSA Journal, 282, 1–30.

    Google Scholar 

  • EFSA. (2014). Dietary exposure to inorganic arsenic in the European population. The EFSA Journal, 12(3), 3597.

  • Eijsackers, H., Swartjes, F. A., Van Rensburg, L., & Maboeta, M. S. (2014). The need for attuned soil quality risk assessment for non-Western humans and ecosystems, exemplified by mining areas in South Africa. Environmental Science & Policy, 44, 174–180.

    Article  Google Scholar 

  • Elert, M., Bonnard, R., Jones, C., Schoof, R. A., & Swartjes, F. A. (2011). Human exposure pathways. In F. A. Swartjes (Ed.), Dealing with contaminated sites. From theory towards practical application (1st ed., Vol. 1, pp. 455–516). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Environment Agency. (2008). Human health toxicological assessment of contaminants in soil. Science report SC050021/SR2, Environment Agency, Bristol, UK. http://www.environment-agency.gov.uk/static/documents/Research/scho0508bnqyee_2024094.pdf, cited 15 Dec 2008.

  • Falcó, G., Bocio, A., Llobet, J. M., Domingo, J. L., Casas, C., & Teixidó, A. (2004). Dietary intake of hexachlorobenzene in Catalonia, Spain. Science of the Total Environment, 322(1–3), 63–70.

    Article  Google Scholar 

  • FAO and WHO. (2011). Safety Evaluation of certain contaminants in food. Arsenic. Geneva: WHO Food Additives Series. 63.

    Google Scholar 

  • Finley, B. L., Scott, P. K., & Mayhall, D. A. (1994). Development of a standard soil-to-skin adherence probability density function for use in Monte Carlo analyses of dermal exposure. Risk Analysis, 14, 555–569.

    Article  CAS  Google Scholar 

  • Gilbert, S. G., & Weiss, B. (2006). A rationale for lowering the blood lead action level from 10 to 2 μg/dL. NeuroToxicology, 27(5), 693–701.

    Article  CAS  Google Scholar 

  • Groen, K., Vaessen, H. A. M. G., Kliest, J. J. G., de Boer, J. L. M., Van Ooik, T., Timmerman, A., & Vlug, R. F. (1994). Bioavailability of inorganic arsenic from bog ore-containing soil in the dog. Environmental Health Perspectives, 102(2), 181–184.

    Article  Google Scholar 

  • Grosse, S. D., Matte, T. D., Schwartz, J., & Jackson, R. (2002). Economic gains resulting from the reduction in children’s exposure to lead in the U.S. Environmental Health Perspectives, 110, 563–569.

    Article  Google Scholar 

  • Hayes, A. W., & Kruger, C. L. (2014). Hayes’ principles and methods of toxicology (6th ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Intawongse, M., & Dean, J. R. (2006). Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Additives & Contaminants, 23(1), 36–48.

    Article  CAS  Google Scholar 

  • International Programme on Chemical Safety. (1999). Environmental Health Criteria no 210—Principles for the assessment of risks to human health from the exposure to chemicals. Genève: International Programme on Chemical Safety (IPCS), WHO.

    Google Scholar 

  • International Programme on Chemical Safety. (2006). Environmental Health Criteria no 237—Principles for evaluating health risk in children associated with exposure to chemicals. Geneva: International Programme on Chemical Safety, WHO.

    Google Scholar 

  • International Programme on Chemical Safety. (2008). Environmental Health Criteria—Principles for modelling dose-response for the risk assessment of chemicals. Geneva: International Programme on Chemical Safety, WHO.

    Google Scholar 

  • Jayjock, M. A., Lewis, P. G., & Lynch, J. R. (2001). Quantitative level of protection offered to workers by ACGIH threshold limit values occupational exposure limits. AIHAJ, 62, 4–11.

    CAS  Google Scholar 

  • Juhasz, A. L., Weber, J., & Smith, E. (2011). Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils. Journal of Hazardous Materials, 186(2–3), 1870–1879.

    Article  CAS  Google Scholar 

  • Kissel, J. C., Shirai, J. H., Richter, K. Y., & Fenske, R. A. (1998). Investigation of dermal contact with soil in controlled trials. Journal of Soil Contamination, 7(6), 737–752.

    Article  Google Scholar 

  • Knol, A. B., & Staatsen, B. A. M. (2005). Trends in the environmental burden of disease in the Netherlands, 1980–2020, RIVM report 500029001. Bilthoven: RIVM.

    Google Scholar 

  • Kördel, W., Bernhardt, C., Derz, K., Hund-Rinke, K., Harmsen, J., Peijnenburg, W., et al. (2013). Incorporating availability/bioavailability in risk assessment and decision making of polluted sites, using Germany as an example. Journal of Hazardous Materials, 261, 854–862.

    Article  Google Scholar 

  • Kuehster, T., Folkes, D. & Wannamaker, E. (2004). Seasonal variation of observed indoor air concentrations due to vapor intrusion at the redfield site, Colorado, Midwestern States Risk Assessment Symposium Indianapolis, August 26.

  • Lanphear, B. P., Matte, Th D, Rogers, J., Clickner, R. P., Dietz, B., Bornschein, R. L., et al. (2003). The contribution of lead-contaminated house dust and residential soil to children’s blood lead levels: A pooled analysis of 12 epidemiologic studies. Environmental Research, 79(1), 51–68.

    Article  Google Scholar 

  • Le, T. T. Y., Swartjes, F., Römkens, P., Groenenberg, J. E., Wang, P., Lofts, S., & Hendriks, A. J. (2015). Modelling metal accumulation using humic acid as a surrogate for plant roots. Chemosphere, 124(2015), 61–69.

    Google Scholar 

  • Lemanek, K. L., Brown, R. T., Armstrong, F. D., Hood, C., Pegelow, C., & Woods, G. (2002). Dysfunctional eating patterns and symptoms of pica in children and adolescents with sickle cell disease. Clinical Pediatrics, 41(7), 493–500.

    Article  Google Scholar 

  • Li, J. G., Gerzabek, M. H., & Mück, K. (1994). An experimental study on mass loading of soil particles on plant surfaces. Bodenkultur, 45, 15–24.

    Google Scholar 

  • Lindley, F. (2001). Creative ignorance. Human and Ecological Risk Assessment: An International Journal, 7(6), 1593–1601.

    Article  Google Scholar 

  • Lolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment, 8(6), 324–330.

    Article  Google Scholar 

  • Massaccesi, L., Meneghini, C., Comaschi, T., D’Amato, R., Onofri, A., & Businelli, D. (2014). Ligands involved in Pb immobilization and transport in lettuce, radish, tomato and Italian ryegrass. Journal of Plant Nutrition and Soil Science, 177(5), 766–774.

    Article  CAS  Google Scholar 

  • McAlary, T. A., Provoost, J., & Dawson, H. E. (2011). Vapor intrusion. In F. A. Swartjes (Ed.), Dealing with contaminated sites. From theory towards practical application (1st ed., Vol. 1, pp. 409–454). Dordrecht: Springer.

    Chapter  Google Scholar 

  • McMichael, A. J., & Woodward, A. (1999). Quantitative estimation and prediction of human cancer risk: Its history and role in cancer prevention. In S. Moolgavkar, D. Krewski, L. Zeise, E. Cardis, & H. Møller (Eds.), Quantitative estimation and prediction of human cancer risk, IARC scientific publication no 131 (pp. 1–10). Lyon: International Agency for Research on Cancer.

    Google Scholar 

  • Melo, L. C. A., Alleoni, L. R. F., & Swartjes, F. A. (2011). Derivation of critical soil cadmium concentrations for the state of São Paulo, Brazil, based on human health risks. Human and Ecological Risk Assessment: An International Journal, 17(5), 1124–1141.

    Article  CAS  Google Scholar 

  • Mushak, P. (2003). Lead remediation and changes in human lead exposure: Some physiological and biokinetic dimensions. The Science of the Total Environment, 303(1–2), 35–50.

    Article  CAS  Google Scholar 

  • Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C., & Suk, W. A. (2013). The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environmental Health Perspectives, 121, 295–302.

    Article  CAS  Google Scholar 

  • Norra, S., & Stuben, D. (2003). Urban soils. Journal of Soils and Sediments, 394, 230–233.

    Article  Google Scholar 

  • Oesch, F., & Arand, M. (1999). Xenobiotic metabolism. In H. Marquardt, S. G. Schäfer, R. McClellan, & F. Welsch (Eds.), Toxicology. Waltham: Academic Press.

    Google Scholar 

  • Picone, S., Valstar, J., Van Gaans, P., Grotenhuis, T., & Rijnaarts, H. (2012). Sensitivity analysis on parameters and processes affecting vapor intrusion risk. Environmental Toxicology and Chemistry, 31(5), 1042–1052.

    Article  CAS  Google Scholar 

  • Provoost, J., Bosman, A., Reijnders, L., Bronders, J., Touchant, K., & Swartjes, F. (2009). Vapour intrusion from the vadose zone—Seven algorithms compared. Journal of Soils and Sediments—Protection, Risk Assessment, and Remediation. doi:10.1007/s11368-009-0127-4.

  • Provoost, J., Ottoy, R., Reijnders, L., Bronders, J., Keer, I., Swartjes, F., et al. (2011). Henry’s equilibrium partitioning between ground water and soil air: Predictions versus observations. Journal of Environmental Protection, 2(7), 873–881.

    Article  CAS  Google Scholar 

  • Putaud, J.-P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M.-C., Decesari, S., et al. (2004). A European aerosol phenomenology—2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 38, 2579–2595.

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., Ruiz, C. R., Artinano, B., Hansson, H. C., Harrison, R. M., et al. (2004). Speciation and origin of PM10 and PM2.5 in selected European cities. Atmospheric Environment, 38, 6547–6555.

    Article  CAS  Google Scholar 

  • Rodrigues, S. M., Pereira, E., Duarte, A. C., & Römkens, P. F. A. M. (2012). Derivation of soil to plant transfer functions for metals and metalloids: Impact of contaminant’s availability. Plant and Soil, 361, 329–341.

    Article  CAS  Google Scholar 

  • Rutkowski, E. (2014, September). Toward better benchmarks. Can industrial hygienists overcome the challenges associated with occupational exposure limits? The Synergist, Supplement 2014, 22–25.

  • Schroijen, C., Baeyens, W., Schoeters, G., Den Hond, E., Koppen, G., Bruckers, L., et al. (2008). Internal exposure to pollutants measured in blood and urine of Flemish adolescents in function of area of residence. Chemosphere, 71(7), 1317–1325.

    Article  CAS  Google Scholar 

  • Siciliano, S. D., James, K., Zhang, G., Schafe, A. N., & Peak, J. D. (2009). Adhesion and enrichment of metals on human hands from contaminated soil at an arctic urban brownfield. Environmental Science and Technology, 2009(43), 6385–6390.

    Article  Google Scholar 

  • Slob, W. (1999). Deriving safe exposure levels for chemicals from animal studies using statistical methods: Recent developments. In V. Barnett, A. Stein, & K. F. Turkman (Eds.), Statistics for the environment. Statistical aspects of health and the environment (Vol. 4, pp. 153–175). London: Wiley.

  • Slob, W., & Pieters, M. N. (1998). A probabilistic approach for deriving acceptable human intake limits and human health risks from toxicological studies: General framework. Risk Analysis, 18, 787–798.

    Article  CAS  Google Scholar 

  • Stanek, E. J., Calabrese, E. J., & Zorn, M. (2001). Biasing factors for simple soil ingestion estimates in mass balance studies of soil ingestion. Human and Ecological Risk Assessment, 7(2), 329–355.

    Article  CAS  Google Scholar 

  • Su, C.-C., Lin, Y.-Y., Chang, T.-K., Chiang, C.-T., Chung, J.-A., Hsu, Y.-Y., & Lian, I. B. (2010). Incidence of oral cancer in relation to nickel and arsenic concentrations in farm soils of patients’ residential areas in Taiwan. BMC Public Health, 10, 67. doi:10.1186/1471-2458-10-67.

    Article  Google Scholar 

  • Subhani, M., Mustafa, I., Alamdar, A., Katsoyiannis, I. A., Ali, N., Huang, Q., et al. (2015). Arsenic levels from different land-use settings in Pakistan: Bio-accumulation and estimation of potential human health risk via dust exposure. Ecotoxicology and Environmental Safety, 115(2015), 187–194.

    Article  CAS  Google Scholar 

  • Swartjes, F. A. (2007). Insight into the variation in calculated human exposure to soil contaminants using seven different European models. Integrated Environmental Assessment and Management, 3(3), 322–332.

    Article  Google Scholar 

  • Swartjes, F. A. (2009). Evaluation of the variation in calculated human exposure to soil contaminants using seven different European models. Human and Ecological Risk Assessment: An International Journal, 15(1), 138–158.

    Article  CAS  Google Scholar 

  • Swartjes, F. A. (2011). Introduction to contaminated site management. In F. A. Swartjes (Ed.), Dealing with contaminated sites. From theory towards practical application (1st ed., Vol. 1, pp. 3–89). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Swartjes, F. A., & Cornelis, C. (2011). Human health risk assessment. In F. A. Swartjes (Ed.), Dealing with contaminated sites. From theory towards practical application (1st ed., Vol. 1, pp. 209–260). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Swartjes, F. A., d’Allesandro, M., Cornelis, C., Wcislo, E., Muller, D., Hazebrouck, B., et al. (2009). Towards consistency in risk assessment tools for contaminated sites management in the EU. RIVM report 711701091, RIVM, Bilthoven, the Netherlands.

  • Swartjes, F. A., Dirven-Van Breemen, E. M., Otte, P. F., Van Beelen, P., Rikken, M. G. J., Tuinstra, J., et al. (2007). Human health risks due to consumption of vegetables from contaminated sites. Towards a protocol for site-specific assessment. RIVM report 711701040/2007. RIVM, Bilthoven, the Netherlands.

  • Swartjes, F. A., Rutgers, M., Lijzen, J. P. A., Janssen, P. J. C. M., Otte, P. F., Wintersen, A., et al. (2012). State of the art of contaminated site management in the Netherlands: Policy framework and risk assessment tools. Science of the Total Environment, 427–428(2012), 1–10.

    Article  Google Scholar 

  • Swartjes, F. A., & Tromp, P. C. (2008). A tiered approach for the assessment of the human health risks of asbestos in soils. Soil and Sediment Contamination, 17(2), 137–149.

    Article  CAS  Google Scholar 

  • Swartjes, F., Versluijs, Kees, & Otte, Piet. (2013). A tiered approach for the HH RA for consumption of vegetables from with cadmium-contaminated land in urban areas. Environmental Research, 126, 223–231.

    Article  CAS  Google Scholar 

  • Taylor, M. P., Mould, S. A., Kristensen, L. J., & Rouillon, M. (2014). Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health. Environmental Research, 135, 296–303.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Tipping, E. (1998). Humic ion-binding model VI: An improved description of the interactions of protons and metal ions with humic substances. Aquatic Geochemistry, 4, 3–47.

    Article  CAS  Google Scholar 

  • Tipping, E., Vincent, C. D., Lawlor, A. J., & Lofts, S. (2008). Metal accumulation by stream bryophytes, related to chemical speciation. Environmental Pollution, 156, 936–943.

    Article  CAS  Google Scholar 

  • Tonnelier, A., Coecke, S., & Zaldívar, J.-M. (2012). Screening of chemicals for human bioaccumulative potential with a physiologically based toxicokinetic model. Archives of Toxicology, 86(3), 393–403.

    Article  CAS  Google Scholar 

  • Trapp, S. (2002). Dynamic root uptake model for neutral lipophilic organics. Environmental Toxicology and Chemistry, 21, 203–206.

    Article  CAS  Google Scholar 

  • Trapp, S., & Legind, C. N. (2011). Uptake of organic contaminants from soil into vegetables and fruit. In F. A. Swartjes (Ed.), Dealing with contaminated sites. From theory towards practical application (1st ed., Vol. 1, pp. 369–408). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Trapp, S., & Matthies, M. (1995). Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environmental Science and Technology, 29, 2333–2338. (Erratum 30, 360).

    Article  CAS  Google Scholar 

  • Trapp, S., Matthies, M., & Mc Farlane, C. (1994). Model for uptake of xenobiotics into plants: Validation with bromacil experiments. Environmental Toxicology and Chemistry, 13, 413–422.

    Article  CAS  Google Scholar 

  • Turczynowicz, L., Pisaniello, D., & Williamson, T. (2012). Health risk assessment and vapor intrusion: A review and Australian perspective. Human and Ecological Risk Assessment: An International Journal, 18(5), 984–1013.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency. (2006). A framework for assessing health risks of environmental exposures to children. US Environmental Protection Agency, Washington DC, EPA/600/R-05/093F.

  • US Environmental Protection Agency. (2011). Exposure factor handbook, 2011 Edition. United States Environmental Protection Agency, EPA/600/R-090/052F, September 2011.

  • US Environmental Protection Agency. (2012, March 16). EPA’s vapor intrusion database: Evaluation and characterization of attenuation factors for chlorinated volatile organic compounds and residential buildings. EPA 530-R-10-002.

  • US National Research Council. (1983). Risk assessment in the federal government: Managing the process. Washington, DC: National Academy Press.

    Google Scholar 

  • Van Kesteren, P. C. E., Walraven, N., Schuurman, T., Dekker, R., Havenaar, R., Maathuis, A., Bouwmeester, H., et al. (2014). Bioavailability of lead from Dutch made grounds: A validation study. RIVM Report 607711015, The National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands.

  • Verginelli, I., & Baciocchi, R. (2014). Vapor intrusion screening model for the evaluation of risk-based vertical exclusion distances at petroleum contaminated sites. Environmental Science and Technology, 2014(48), 13263–13272.

    Article  Google Scholar 

  • VMM. (2005). Air quality in the Flemish region. Annual report Immission monitoring program—Year 2004 and meteorological year 2004–2005. Erembodegem: VMM (in Dutch).

  • Weschler, C. J., & Nazaroff, W. W. (2012). SVOC exposure indoors: Fresh look at dermal pathways. Indoor Air, 22, 356–377.

    Article  CAS  Google Scholar 

  • Widmaier, E. P., Raff, H., & Strang, K. T. (2011). Vander’s human physiology: The mechanisms of body function. New York: McGraw-Hill Higher Education.

    Google Scholar 

  • Wilkinson, C. F., Christoph, G. R., & Julien, E. (2000). Assessing the risks of exposures to multiple chemicals with a common mechanism of toxicity: How to cumulate. Regulatory Toxicology and Pharmacology, 31, 30–43.

    Article  CAS  Google Scholar 

  • Wilson, J. T., Weaver, J. W., & White, H. (2012, December). An Approach for developing site-specific lateral and vertical inclusion zones within which structures should be evaluated for petroleum vapor intrusion due to releases of motor fuel from underground storage tanks. Ground Water Issue, US Environmental Protection Agency, EPA/600/R-13/047.

  • Wragg, J., Cave, M., Taylor, H., Basta, N., Brandon, E., Casteel, S., et al. (2009). Inter-laboratory trial of a unified bioaccessibility procedure, chemical & biological hazards programme open report OR/07/027.

  • WWF. (2003). WWF-UK National biomonitoring survey 2003. World Wildlife Fund. http://www.wwf.org.uk/filelibrary/pdf/biomonitoringresults.pdf. Accessed October 30, 2014.

  • Xue, J., Zartarian, V., Moya, J., Freeman, N., Beamer, P., Black, K., et al. (2007). A meta-analysis of children’s hand-to-mouth frequency data for estimating nondietary ingestion exposure. Risk Analysis, 27(2), 411–420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Swartjes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swartjes, F.A. Human health risk assessment related to contaminated land: state of the art. Environ Geochem Health 37, 651–673 (2015). https://doi.org/10.1007/s10653-015-9693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9693-0

Keywords

Navigation