Skip to main content

Advertisement

Log in

Restoration of sodic soils involving chemical and biological amendments and phytoremediation by Eucalyptus camaldulensis in a semiarid region

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Salt-affected soils in semiarid regions impede the agricultural productivity and degrade the ecosystem health. In South India, several hectares of land are salt-affected, where the evapotranspiration exceeds the annual precipitation. This study is an attempt to ameliorate sodic soils, by an experiment involving chemical treatment (addition of gypsum), organic amendments (decomposed bagasse pith and green manuring with Sesbania rostrata) and phytoremediation by plantation of Eucalyptus camaldulensis. The prime focus is to minimize the use of gypsum and improve the soil health in terms of nutrients, microbial population and enzyme activity in addition to sodicity reclamation. At the end of the third year, a reduction of 10 % in soil pH, 33 % in electrical conductivity and 20 % in exchangeable sodium percentage was achieved compared to the initial values. Three- to fourfold increases in organic carbon content were observed. Significant improvement in the available major and micronutrients of soil, microbial growth and enzyme activity was observed, suggesting phytoremediation by E. camaldulensis as a sustainable option for restoration of similar kind of degraded lands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen, O. N. (1953). Experiments in soil bacteriology. Minneapolis, MN: Burges Publishers.

    Google Scholar 

  • Alvarez, R. J., Ortiz, S. R., & Alcaraz, A. F. (2001). Edaphic characterization and soil ionic composition influencing plant zonation in a semiarid Mediterranean salt marsh. Geoderma, 99, 81–98.

    Article  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (20th ed.). Washington DC: American Public Health Association (APHA).

    Google Scholar 

  • Bossio, D., Critchley, W., Geheb, K., Van Lynden, G., & Mati, B. (2007). Conserving soil—protecting water comprehensive assessment of water management in agriculture: Water for food, water for life. Sterling, VA: Stylus Publishing.

    Google Scholar 

  • Casida, L. E., Klein, D. A., & Santoro, T. (1964). Soil dehydrogenase activity. Soil Science, 98, 371–376.

    Article  CAS  Google Scholar 

  • Chen, Y., & Barak, P. (1982). Iron nutrition of plants in calcareous soils. Advances in Agronomy, 35, 217–240.

    Article  CAS  Google Scholar 

  • Chi, C. M., Zhao, C. W., Sun, X. J., & Wang, Z. C. (2012). Reclamation of saline-sodic soil properties and improvement of rice (Oriza sativa L.) growth and yield using desulfurized gypsum in the west of Songnen Plain, northeast China. Geoderma, 187–188, 24–30.

    Article  Google Scholar 

  • Curtin, D., & Naidu, R. (1998). Fertility constraints to plant production. In M. E. Sumner & R. Naidu (Eds.), Sodic soil: Distribution, management and environmental consequences (pp. 107–123). New York, NY: Oxford University Press.

    Google Scholar 

  • Dale, G., & Dieters, M. (2007). Economic returns from environmental problems: Breeding salt and drought-tolerant eucalypts for salinity abatement and commercial forestry. Ecological Engineering, 31, 175–182.

    Article  Google Scholar 

  • Denison, D. A., & Koehn, R. D. (1977). Assay of cellulases. Mycologia, 69, 592–601.

    Article  CAS  Google Scholar 

  • Dias, B. O., Silva, C. A., Higashikawa, F. S., Roig, A., & Sanchez- Monedero, M. A. (2010). Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresource Technology, 101, 1239–1246.

    Article  CAS  Google Scholar 

  • Geisseler, D., & Horwath, W. R. (2009). Relation between carbon and nitrogen availability and extracellular enzyme activities in soil. Pedobiologia, 53, 87–98.

    Article  CAS  Google Scholar 

  • Gennari, M., Abbate, C., La Porta, V., Baglieri, A., & Cignetti, A. (2007). Microbial response to Na2SO4 additions in a volcanic soil. Arid Land Research and Management, 21, 211–227.

    Article  CAS  Google Scholar 

  • Gill, J. S., Sale, P. W. G., Peries, R. R., & Tang, C. (2009). Changes in soil physical properties and crop root growth in dense sodic subsoil following incorporation of organic amendments. Field Crop Research, 114, 137–146.

    Article  Google Scholar 

  • Gupta, R. K., & Abrol, I. P. (1990). Salt-affected soils: Their reclamation and management for crop production. Advances in Soil Science, 11, 223–288.

    Article  Google Scholar 

  • Gupta, R.P., & Dakshinamoorthy, C. (1980). Procedure for physical analysis of soils and collection of agrometeriological data. Division of Agricultural physics: Indian Agricultural Research Institute, New Delhi.

  • Hanway, J. J., & Heidel, H. (1952). Soil analysis methods as used in Iowa State College. Iowa State College Bulletin, 57, 1–131.

    Google Scholar 

  • Jackson, M. L. (1973). Soil chemical analysis. New Delhi: Prentice Hall of India Pvt Ltd.

    Google Scholar 

  • Jayawardane, N. S., Blackwell, T., & Stapper, M. (1987). Effects of changes in moisture profiles of a transitional Red Brown earth due to surface and slotted gypsum application. Australian Journal of Agricultural Research, 38, 239–251.

    Article  Google Scholar 

  • Jiang, H., Dong, H., Yu, B., Liu, X., Li, Y., Ji, S., & Zhang, C. L. (2007). Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environmental Microbiology, 9, 2603–2621.

    Article  CAS  Google Scholar 

  • Kaushik, A., Nisha, R., Jagjeeta, K., & Kausik, C. P. (2005). Impact of long and short term irrigation of a sodic soil with distillery effluent in combination with bio amendments. Bioresource technology, 96, 1860–1866.

    Article  CAS  Google Scholar 

  • Kenknight, G., & Munie, J. H. (1939). Isolation of phytopathogenic actinomycetes. Phytopathology, 29, 1000–1001.

    Google Scholar 

  • Klich, I., Wilding, L. P., & Pfordresher, A. A. (1990). Close interval spatial variability of Udertic paleustalfs in East Central Texas. Soil Science Society of America Journal, 54, 489–494.

    Article  Google Scholar 

  • Larney, F. J., & Angers, D. A. (2012). The role of organic amendments in soil reclamation: A review. Canadian Journal of Soil Science, 92, 19–38.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norwal, W. A. (1978). Development of DTPA soil test for Fe, Mn, Zn and Cu. Soil Science Society of America Proceedings, 42, 421–428.

    Article  CAS  Google Scholar 

  • Madsen, P. A., & Mulligan, D. R. (2006). Effect of NaCl on emergence and growth of a range of provenances of Eucalyptus ciriodora, Eucalyptus populnea, Eucalyptus camaldulensis and Acacia salicina. Forest Ecology and Management, 228, 152–159.

    Article  Google Scholar 

  • Martin, J. P. (1950). Use of acid, Rose Bengal and Streptomycin in the plate method for estimating soil fungi. Soil Science, 69, 225–233.

    Google Scholar 

  • Mishra, A., & Sharma, S. D. (2003). Leguminous trees for the restoration of degraded sodic wasteland in eastern Utter Pradesh, India. Land Degradation and Development, 14, 245–261.

    Article  Google Scholar 

  • Nielsen, D. R., Biggar, J. W., & Luthin, J. N. (1966). Desalinization of soils under controlled unsaturated conditions. In: Proceedings of International Commission on Irrigation and Drainage, 6th Congress, New Delhi, India.

  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Circulation 939.

  • Pathak, H., & Rao, D. L. N. (1998). Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Journal of Soil Biology and Biochemistry, 30, 695–702.

    Article  CAS  Google Scholar 

  • Qadir, M., & Oster, J. D. (2004). Crop and irrigation management strategies for saline–sodic soils and waters aimed at environmentally sustainable agriculture. Science of the Total Environment, 323, 1–19.

    Article  CAS  Google Scholar 

  • Qadir, M., Oster, J. D., Schubert, S., Nobel, A. D., & Sahrawat, K. L. (2007). Phytoremediation of sodic and saline sodic soils. Advances in Agronomy, 96, 197–247.

    Article  CAS  Google Scholar 

  • Qadir, M., Schubert, S., Ghafoor, A., & Mortaza, G. (2001). Amelioration strategies for sodic soils: A review. Land Degradation and Development, 12, 357–386.

    Article  Google Scholar 

  • Qadir, M., Tubeileh, A., Akhtar, J., Larbi, A., Minhas, P. S., & Khan, M. A. (2008). Productivity enhancement of salt-affected environments through crop diversification. Land Degradation and Development, 19, 429–453.

    Article  Google Scholar 

  • Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57, 1017–1023.

    Article  CAS  Google Scholar 

  • Rockwood, D. L., Rudie, A. W., Ralph, S. A., Zhu, J. Y., & Winandy, J. E. (2008). Energy product options for Eucalyptus species grown as short rotation woody crops. International Journal of Molecular Sciences, 9, 1361–1378.

    Article  CAS  Google Scholar 

  • Schollenberger, C. J., & Dreibelbis, F. R. (1930). Analytical methods in base exchange investigations on soils. Soil Science, 30, 161–174.

    Article  CAS  Google Scholar 

  • Schoonover, W. R. (1952). Examinations of soils for alkali. Berkeley, California: University of California Extension Service.

    Google Scholar 

  • Sharma, R. C., Rao, B. R. M., & Saxena, R. K. (2004). Salt affected soils in India-current assessment. In Advances in sodic land reclamation. Proceedings of the international conference on sustainable management of sodic lands (pp. 1–26). Lucknow: U. P. Council of Agricultural Research.

  • Sharma, S. K., Singh, G., Rao, G. G., & Yaduvanshi, N. P. S. (2008). Biomass and biodiesel for energy production from salt-affected lands. Karnal, Haryana: Central Soil Salinity Research Institute. p 20.

    Google Scholar 

  • Singh, B. (1996). Influence of forest litter on reclamation of semiarid sodic soils. Arid Soil Research and Rehabilitation, 10, 201–211.

    Article  Google Scholar 

  • Singh, G., & Singh, N. T. (1997). Effect of land use practices on organic carbon dynamics of sodic soils. In R. Lal, J. Kimble, & R. Follett (Eds.), Soil properties and their management for carbon sequestration (pp. 89–105). USDA-Natural Resources Conservation Service: National Soil Survey Centre.

    Google Scholar 

  • Singh, B., Tripathi, K. P., Jain, R. K., & Behl, H. M. (2000). Fine root biomass and tree species effect on potential N mineralization in afforested sodic soil. Plant and Soil, 219, 81–89.

    Article  CAS  Google Scholar 

  • Soil Survey Staff. (1999). Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. USDA, NRCS. Agriculture handbook 436 (2nd ed.). Washington DC: US government Printing Office.

    Google Scholar 

  • Subbiah, G., & Asija, A. L. (1956). A rapid procedure for estimation of available nitrogen in soils. Current Science, 125, 259–260.

    Google Scholar 

  • Swarup, A. (1981). Effect of flooding on physiochemical changes in sodic soils. Journal of Plant Nutrition and Soil Science, 144, 136–142.

    CAS  Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1972). Assay of urease activity in soil. Soil Biology and Biochemistry, 4, 479–487.

    Article  CAS  Google Scholar 

  • Tan, J., & Kang, Y. (2009). Changes in soil properties under the influence of cropping and drip irrigation during the reclamation of severe salt affected soils. Agricultural Sciences in China, 8, 1228–1237.

    Article  CAS  Google Scholar 

  • Tejada, M., Hernandez, M. T., & Garcia, C. (2006). Application of two organic amendments on soil restoration: Effects on the soil biological properties. Journal of Environmental Quality, 35, 1010–1017.

    Article  CAS  Google Scholar 

  • Tisdall, J. M. (1991). Fungal hyphae and structural stability of soil. Australian Journal of Soil Research, 29, 729–743.

    Article  Google Scholar 

  • Tripathi, S., Chakraborty, A., Chakrabarti, K., & Bandyopadhyay, B. K. (2007). Enzymatic activities and microbial biomass in coastal soils of India. Soil Biology and Biochemistry, 39, 2840–2848.

    Article  CAS  Google Scholar 

  • Tripathi, S., Kumari, S., Chakraborty, A., Gupta, A., Chakrabarti, K., & Bandyapadhyay, B. K. (2006). Microbial biomass and its activities in salt-affected soils. Biology and Fertility of Soils, 42, 273–277.

    Article  Google Scholar 

  • Udayasoorian, C., Sebastian, S. P., & Jayabalakrishnan, R. M. (2009). Effect of amendments on problem soils with poor quality irrigation water under sugarcane crop. American–Eurasian Journal of Agriculture and Environmental Science, 5, 618–626.

    CAS  Google Scholar 

  • US Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkali soils. USDA Handbook No. 60. Washington, DC:US Government Printing Office.

  • Van Antwerpen, R., & Meyer, J. H. (1996). Soil degradation under sugarcane cultivation in northern KwaZulu-Natal. Proceedings of the South African Sugar Technologists Association, 70, 29–33.

    Google Scholar 

  • Walkley, A., & Black, C. A. (1934). An examination of the degtijareft method of determination of organic matter and proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Wang, L., Sun, X., Li, S., Zhang, T., Zhang, W., & Zhai, P. (2014). Application of organic amendments to a coastal saline soil in north china: effects on soil physical and chemical properties and tree growth. PLoS One, 9, e89185.

    Article  Google Scholar 

  • Watanabe, F. S., & Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soils. Soil Science Society of America Proceedings, 29, 677–678.

    Article  CAS  Google Scholar 

  • Wong, V. N. L., Greene, R. S. B., Dalal, R. C., & Murphy, B. W. (2010). Soil carbon dynamics in saline and sodic soils: A review. Soil Use and Management, 26, 2–11.

    Article  Google Scholar 

  • Yazdanpanah, N., Pazira, E., Neshat, A., Mahmoodabadi, M., & Sinobas, L. R. (2013). Reclamation of calcareous saline sodic soil with different amendments (II): Impact on nitrogen, phosphorous and potassium redistribution and on microbial respiration. Agricultural Water Management, 120, 39–45.

    Article  Google Scholar 

  • Yuan, B. C., Li, Z. Z., Liu, H., Gao, M., & Zhang, Y. Y. (2007). Microbial biomass and activity in salt affected soils under and conditions. Applied Soil Ecology, 35, 319–328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mohanraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seenivasan, R., Prasath, V. & Mohanraj, R. Restoration of sodic soils involving chemical and biological amendments and phytoremediation by Eucalyptus camaldulensis in a semiarid region. Environ Geochem Health 37, 575–586 (2015). https://doi.org/10.1007/s10653-014-9674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9674-8

Keywords

Navigation