Skip to main content

Iodine concentrations in Danish groundwater: historical data assessment 1933–2011


In areas where water is a major source of dietary iodine (I), the I concentration in drinking water is an important factor for public health and epidemiological understandings. In Denmark, almost all of the drinking water is originating from groundwater. Therefore, understanding the I variation in groundwater and governing factors and processes are crucial. In this study, we perform uni- and multivariate analyses of all available historical Danish I groundwater data from 1933 to 2011 (n = 2,562) to give an overview on the I variability for first time and to discover possible geochemical associations between I and twenty other elements and parameters. Special attention is paid on the description and the quality assurance of this complex compilation of historical data. The high variability of I in Danish groundwater (<d.l. to 1,220 µg/l) is characterised by both small-scale heterogeneity and large-scale spatial trends, e.g. higher concentrations observed in the eastern part of Denmark. Significant trends are observed also with respect to the depth of extraction and geology, indicating the importance of older marine limestone and chalk deposits. A principal component analysis on centred log-ratio-transformed data (clr) revealed associations between I, Li, B, Ba, Br implying saline water influence. High I is also associated with reduced and alkaline groundwaters for this data set, dominated by Ca–HCO3 water type.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  • Andersen, S., & Lauberg, P. (2009). The Nature of Iodine in Drinking Water. In V. R. Preedy, G. N. Burrow, & R. Watson (Eds.), Comprehensive handbook of iodine nutritional, biochemical, pathological and therapeutic aspects (pp. 125–134). London: Academic Press.

    Google Scholar 

  • Andersen, S., Petersen, S. B., & Laurberg, P. (2002). Iodine in drinking water in Denmark is bound in humic substances. European Journal of Endocrinology, 147(5), 663–670. doi:10.1530/eje.0.1470663.

    Article  CAS  Google Scholar 

  • Buccianti, A., & Pawlowsky-Glahn, V. (2005). New perspectives on water chemistry and compositional data analysis. Mathematical Geology, 37(7), 703–727. doi:10.1007/s11004-005-7376-6.

    Article  CAS  Google Scholar 

  • CAMO. (2011). The unscrambler (10.1 (64-bit) ed), CAMO Software AC.

  • Comas-Cufí, M., & Thió-Henestrosa, S. (2011). CoDaPack 2.0: A stand-alone, multi-platform compositional software. In J. J. Egozcue, R. Tolosana-Delgado, & M. I. Ortego (Eds.), CoDaWork’11: 4th international workshop on compositional data analysis (2.01.13 ed). Sant Feliu de Guíxols.

  • Daunis-I-Estadella, J., Barceló-Vidal, C., & Buccianti, A. (2006). Exploratory compositional data analysis (vol. 264, pp. 161–174).

  • Esbensen, K. H. (2010). Multivariate data analysisIn practice (5th ed), CAMO Softwares AS.

  • ESRI. (1999–2010). ArcMap (10.0 ed).

  • Fuge, R. (2005). Soils and Iodine Deficiency. In O. Selinus, B. J. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, et al. (Eds.), Essentials of medical geology: Impacts of the natural environment on public health (pp. 417–433). Amsterdam: Elsevier.

  • Gilfedder, B. S., Petri, M., & Biester, H. (2009). Iodine speciation and cycling in fresh waters: A case study from a humic rich headwater lake (Mummelsee). Journal of Limnology, 68(2), 396–408.

    Article  Google Scholar 

  • Håkansson, E., & Pedersen, S. S. (1992). Geologisk Kort over den Danske Undergrund VARV.

  • Hansen, B., Mossin, L., Ramsay, L., Thorling, L., Ernstsen, V., Jørgensen, J., et al. (2009). Kemisk grundvandskortlægning. In GEUS (Ed.), (pp. 1–112). Øster Voldgade 10, DK-1350 København K: GEUS.

  • Hansen, B., Thorling, L., Dalgaard, T., & Erlandsen, M. (2011). Trend reversal of nitrate in Danish groundwater—a reflection of agricultural practices and nitrogen surpluses since 1950. Environmental Science and Technology, 45(1), 228–234.

    Article  CAS  Google Scholar 

  • Hou, X. (2009). Iodine Speciation in Foodstuffs, Tissues, and Environmental Samples: Iodine species and Analytical Method. In V. R. Preedy, G. N. Burrow, & R. Watson (Eds.), Comprehensive handbook of iodine nutritional, biochemical, pathological and therapeutic aspects (pp. 139–150). London: Academic Press.

    Google Scholar 

  • Hou, X., Aldahan, A., Nielsen, S. P., & Possnert, G. (2009). Time series of 129I and 127I speciation in precipitation from Denmark. Environmental Science and Technology, 43(17), 6522–6528.

    Article  CAS  Google Scholar 

  • Hu, Q., Moran, J. E., & Blackwood, V. (2009). Geochemical Cycling of Iodine Species in Soils. In V. R. Preedy, G. N. Burrow, & R. Watson (Eds.), Comprehensive handbook of iodine nutritional, biochemical, pathological and therapeutic aspects (pp. 93–105). London: Academic Press.

    Google Scholar 

  • Ito, K., & Hirokawa, T. (2009). Iodine and Iodine species in Seawater: Speciation, Distribution, and Dynamics. In V. R. Preedy, G. N. Burrow, & R. Watson (Eds.), Comprehensive handbook of iodine nutritional, biochemical, pathological and therapeutic aspects (pp. 83–91). London: Academic Press.

    Google Scholar 

  • JUPITER—Danmarks geologiske & hydrologiske database (2011).

  • Kelstrup, N., Bækgaard, A., & Andersen, L. J. (1982). Grundvandsressourcer i Danmark (f. o. n. s. Generaldirektoratet for miljø, Trans.). Hannover: Kommissionen for de Europæiske Fællesskaber.

  • Laurberg, P., Jørgensen, T., Perrild, H., Ovesen, L., Knudsen, N., Pedersen, I. B., et al. (2006). The Danish investigation on iodine intake and thyroid disease, DanThyr: Status and perspectives. European Journal of Endocrinology, 155(2), 219–228.

    Article  CAS  Google Scholar 

  • Mokrik, R., Karro, E., Savitskaja, L., & Drevaliene, G. (2009). The origin of barium in the Cambrian-Vendian aquifer system, North Estonia. Baariumi päritolu Kambriumi-Vendi veekompleksis Põhja-Eestis, 58(3), 193–208.

    Google Scholar 

  • Muramatsu, Y., Fehn, U., & Yoshida, S. (2001). Recycling of iodine in fore-arc areas: Evidence from the iodine brines in Chiba, Japan. Earth and Planetary Science Letters, 192(4), 583–593.

    Article  CAS  Google Scholar 

  • Muramatsu, Y., & Wedepohl, H. K. (1998). The distribution of iodine in the earth’s crust. Chemical Geology, 147(3–4), 201–216. doi:10.1016/s0009-2541(98)00013-8.

    Article  CAS  Google Scholar 

  • Pawlowsky-Glahn, V., & Egozcue, J. J. (2006). Compositional data and their analysis: an introduction. Geological Society, London, Special Publications, 264(1), 1–10. doi:10.1144/gsl.sp.2006.264.01.01.

    Article  CAS  Google Scholar 

  • Pedersen, A. N., Fagt, S., Groth, M. V., Christensen, T., Biltoft-Jensen, A., Matthiessen, J., et al. (2010). Danskernes kostvaner 2003–2008 (D. Fødevareinstituttet, Trans.). (pp. 1–200): DTU Fødevareinstituttet.

  • Pedersen, K. M., Laurberg, P., Nøhr, S., Jørgensen, A., & Andersen, S. (1999). Iodine in drinking water varies by more than 100-fold in Denmark. Importance for iodine content of infant formulas. European Journal of Endocrinology, 140(5), 400–403.

    Article  CAS  Google Scholar 

  • Rasmussen, L. B., Larsen, E. H., & Ovesen, L. (2000). Iodine content in drinking water and other beverages in Denmark. European Journal of Clinical Nutrition, 54(1), 57–60.

    Article  CAS  Google Scholar 

  • Rasmussen, L. B., Ovesen, L., Bülow, I., Jørgensen, T., Knudsen, N., Laurberg, P., et al. (2002). Dietary iodine intake and urinary iodine excretion in a Danish population: effect of geography, supplements and food choice. The British Journal of Nutrition, 87(1), 61–69. doi:10.1079/bjn2001474.

    Article  CAS  Google Scholar 

  • Reimann, C., & Birke, M. (2010). Geochemistry of european bottled water. Stuttgart, Germany: Borntraeger Science Publishers.

    Google Scholar 

  • Sánchez-Martos, F., Pulido-Bosch, A., Molina-Sánchez, L., & Vallejos-Izquierdo, A. (2002). Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southeast Spain). Science of the Total Environment, 297(1–3), 43–58.

    Article  Google Scholar 

  • Santos, I. R., Burnett, W. C., Misra, S., Suryaputra, I. G. N. A., Chanton, J. P., Dittmar, T., et al. (2011). Uranium and barium cycling in a salt wedge subterranean estuary: The influence of tidal pumping. Chemical Geology, 287(1–2), 114–123.

    Article  CAS  Google Scholar 

  • Saxholt, E., Christensen, A. T., Møller, A., Hartkopp, H. B., Hess Ygil, K., Hels, O. H. (2008). Danish Food Composition Databank. In ed. 7.01, Department of Nutrition, National Food Institute, Technical University of Denmark.

  • Truesdale, V. W., Danielssen, D. S., & Waite, T. J. (2003). Summer and winter distributions of dissolved iodine in the Skagerrak. Estuarine, Coastal and Shelf Science, 57(4), 701–713.

    Article  CAS  Google Scholar 

  • Whitehead, D. C. (1984). The distribution and transformations of iodine in the environment. Environment International, 10(4), 321–339. doi:10.1016/0160-4120(84)90139-9.

    Article  CAS  Google Scholar 

  • WHO. (2007). Iodine deficiency in Europe: A continuing public health problem. In M. Andersson, B. de Benoist, I. Darnton-Hill, & F. Delange (Eds.), (pp. 1–86). France: World Health Organization, UNICEF.

Download references


This paper is part of the Ph. D. study of the first author; the Ph. D. project was funded by GEOCENTER Denmark. We gratefully acknowledge the financial support by the Geological Survey of Denmark and Greenland (GEUS) and Aarhus University.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Denitza Dimitrova Voutchkova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PGF 736 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voutchkova, D.D., Kristiansen, S.M., Hansen, B. et al. Iodine concentrations in Danish groundwater: historical data assessment 1933–2011. Environ Geochem Health 36, 1151–1164 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: