Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Release, deposition and elimination of radiocesium (137Cs) in the terrestrial environment

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

This article was retracted on 01 March 2016

Abstract

Radionuclide contamination in terrestrial ecosystems has reached a dangerous level. The major artificial radionuclide present in the environment is 137Cs, which is released as a result of weapon production related to atomic projects, accidental explosions of nuclear power plants and other sources, such as reactors, evaporation ponds, liquid storage tanks, and burial grounds. The release of potentially hazardous radionuclides (radiocesium) in recent years has provided the opportunity to conduct multidisciplinary studies on their fate and transport. Radiocesium’s high fission yield and ease of detection made it a prime candidate for early radio-ecological investigations. The facility setting provides a diverse background for the improved understanding of various factors that contribute toward the fate and transfer of radionuclides in the terrestrial ecosystem. In this review, we summarize the significant environmental radiocesium transfer factors to determine the damaging effects of radiocesium on terrestrial ecosystem. It has been found that 137Cs can trace the transport of other radionuclides that have a high affinity for binding to soil particles (silts and clays). Possible remedial methods are also discussed for contaminated terrestrial systems. This review will serve as a guideline for future studies of the fate and transport of 137Cs in terrestrial environments in the wake of the Fukushima Nuclear Power Plant disaster in 2011.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Al-Masri, M. S. (2006). Vertical distribution and inventories of 137Cs in the Syrian soils of the eastern Mediterranean region. Journal of Environmental Radioactivity, 86(2), 187–198.

    Article  CAS  Google Scholar 

  • Antonio, M. R., Dietz, M. L., Jensen, M. P., Soderholm, L., & Horwitz, E. P. (1997). EXAFS studies of cesium complexation by dibenzo-crown ethers in tri-n-butyl phosphate. Inorganica Chimica Acta, 255, 13–20.

    Article  CAS  Google Scholar 

  • Aoyama, M., Fukasawa, M., Hirose, K., Hamajima, Y., Kawano, T., Povinec, P. P., et al. (2011). Cross equator transport of 137Cs from North Pacific Ocean to South Pacific Ocean (BEAGLE2003 cruises). Progress in Oceanography, 89, 7–16.

    Article  Google Scholar 

  • Aoyama, M., & Hirose, K. (2008). Radiometric determination of anthropogenic radionuclides in seawater. In P. Povinec (Ed.), Radioactivity in the environment (pp. 137–162). Amsterdam: Elsevier.

    Google Scholar 

  • Ashraf, M. A., Rehman, M. A., Maah, M. J., & Yusoff, I. (2013). Cesium-137: Radio-chemistry, fate and transport, remediation and future concerns. Critical Reviews in Environmental Science and Technology. doi:10.1080/10643389.2013.790753.

  • Balonov, M., Barnett, C., Belli, M., Beresford, N., Berkovsky, V., Bossew, P., et al. (2010). Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environment. Vienna: IAEA.

    Google Scholar 

  • Ben-Asher, J. (2011). Regulating in a radioactive world: The 1593 FDA and radionuclide contamination. Harvard student paper. http://nrs.harvard.edu/urn-3:HUL.InstRepos:8789611.

  • Beresford, N. A., Broadley, M. R., Howard, B. J., Barnett, C. L., & White, P. J. (2004). Estimating radionuclide transfer to wild species—Data requirements and availability for terrestrial ecosystems. Journal of Radiological Protection, 24(4A), A89.

    Article  CAS  Google Scholar 

  • Beresford, N. A., & Vives i Batlle, J. (2013). Estimating the biological half-life for radionuclides in homoeothermic vertebrates: A simplified allometric approach. Radiation and Environmental Biophysics, 52(4), 505–511.

    Article  CAS  Google Scholar 

  • Beresford, N. A., Yankovich, T. L., Wood, M. D., Fesenko, S., Andersson, P., Muikku, M., et al. (2013). A new approach to predicting environmental transfer of radionuclides to wildlife: A demonstration for freshwater fish and caesium. Science of the Total Environment, 463–464, 284–292.

    Article  CAS  Google Scholar 

  • Bolsunovsky, A., & Dementyev, D. (2011). Evidence of the radioactive fallout in the center of Asia (Russia) following the Fukushima Nuclear Accident. Journal of Environmental Radioactivity, 102(11), 1062–1064.

    Article  CAS  Google Scholar 

  • Bossew, P., Lettner, H., Hubmer, A., Erlinger, C., & Gastberger, M. (2007). Activity ratios of 137Cs, 90Sr and 239 + 240Pu in environmental samples. Journal of Environmental Radioactivity, 97(1), 5–19.

    Article  CAS  Google Scholar 

  • Bowyer, T. W., Biegalski, S. R., Cooper, M., Eslinger, P. W., Haas, D., Hayes, J. C., et al. (2011). Elevated radioxenon detected remotely following the Fukushima nuclear accident. Journal of Environmental Radioactivity, 102(7), 681–687.

    Article  CAS  Google Scholar 

  • Brandt, J., Christensen, J. H., & Frohn, L. M. (2002). Modelling transport and deposition of caesium and iodine from Chernobyl accident using the DREAM model. Atmospheric Chemistry and Physics, 2, 397–417.

    Article  CAS  Google Scholar 

  • Brechignac, F., Polikarpov, G., Oughton, D. H., Hunter, G., Alexakhin, R., Zhu, Y. G., et al. (2003). Protection of the environment in the 21st century: Radiation protection of the biosphere including humankind. Statement of the International Union of Radioecology. Journal of Environmental Radioactivity, 70(3), 155–159.

    Article  CAS  Google Scholar 

  • Brenner, D. J., Doll, R., Goodhead, D. T., Hall, E. J., Land, C. E., Little, J. B., et al. (2003). Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 13761–13766.

    Article  CAS  Google Scholar 

  • Brito, J. C., Godinho, R., Martinez-Freiria, F., Pleguezuelos, J. M., Rebelo, H., Santos, X., et al. (2014). Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel. Biological Reviews of the Cambridge Philosophical Society, 89(1), 215–231.

    Article  Google Scholar 

  • Brown, J. E., Alfonso, B., Avila, R., Beresford, N. A., Copplestone, D., Pröhl, G., et al. (2008). The ERICA tool. Journal of Environmental Radioactivity, 99(9), 1371–1383.

    Article  CAS  Google Scholar 

  • Butler, D. (2011). First estimates of total radioactive cesium and iodine emissions from Fukushima Plant. Nature Newsblog. http://blogs.nature.com/news/2011/03/firstestimatesofradioactive.html.

  • Chiang, P. N., Wang, M. K., Huang, P. M., Wang, J. J., & Chiu, C. Y. (2010). Cesium and strontium sorption by selected tropical and subtropical soils around nuclear facilities. Journal of Environmental Radioactivity, 101(6), 472–481.

    Article  CAS  Google Scholar 

  • Chino, M., Ishikawa, H., & Yamazawa, H. (1993). SPEEDI and WSPEEDI: Japanese emergency response systems to predict radiological impacts in local and workplace areas due to a nuclear accident. Radiation Protection Dosimetry, 50, 145–152.

    Google Scholar 

  • Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., & Yamazawa, H. (2011). Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. Journal of Nuclear Science and Technology, 48(7), 1129–1134.

    Article  CAS  Google Scholar 

  • Cid, A. S., Anjos, R. M., Zamboni, C. B., Velasco, H., Macario, K., Rizzotto, M., et al. (2013). Temporal evolution of (1)(3)(7)Cs(+), K(+) and Na(+) in fruits of South American tropical species. The Science of the Total Environment, 444, 115–120.

    Article  CAS  Google Scholar 

  • Cyranoski, D., & Brumfiel, G. (2011). Fukushima impact is still hazy. Nature, 477(7363), 139–140.

    Article  CAS  Google Scholar 

  • Davoine, X., & Bocquet, M. (2007). Inverse modelling-based reconstruction of the Chernobyl source term available for long-range transport. Atmospheric Chemistry and Physics, 7, 1549–1564.

    Article  CAS  Google Scholar 

  • De Hoop, L., Huijbregts, M. A. J., Schipper, A. M., Veltman, K., De Laender, F., Viaene, K. P. J., et al. (2013). Modelling bioaccumulation of oil constituents in aquatic species. Marine Pollution Bulletin, 76(1–2), 178–186.

    Article  CAS  Google Scholar 

  • Devell, L., Guntay, S., & Powers, D. A. (1996). The Chernobyl reactor accident source term: Development of a consensus view. Paris: OECD Nuclear Energy Agency.

    Google Scholar 

  • Diaz Leon, J., Jaffe, D. A., Kaspar, J., Knecht, A., Miller, M. L., Robertson, R. G. H., et al. (2011). Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA. Journal of Environmental Radioactivity, 102(11), 1032–1038.

    Article  CAS  Google Scholar 

  • Długosz-Lisiecka, M., & Bem, H. (2012). Determination of the mean aerosol residence times in the atmosphere and additional 210po input on the base of simultaneous determination of 7be, 22na, 210pb, 210bi and 210po in urban air. Journal of Radioanalytical and Nuclear Chemistry, 293, 135–140.

    Article  CAS  Google Scholar 

  • Dodge, C. J. X., & Francis, A. J. (1994). Photodegradation of uranium citrate complex with uranium recovery. Environmental Science and Technology, 28(2), 1300–1306.

    Article  CAS  Google Scholar 

  • Dowdall, M., Standring, W., Shaw, G., & Strand, P. (2008). Will global warming affect soil-to-plant transfer of radionuclides? Journal of Environmental Radioactivity, 99(11), 1736–1745.

    Article  CAS  Google Scholar 

  • Dupré de Boulois, H., Joner, E. J., Leyval, C., Jakobsen, I., Chen, B. D., Roos, P., et al. (2008). Role and influence of mycorrhizal fungi on radiocesium accumulation by plants. Journal of Environmental Radioactivity, 99(5), 785–800.

    Article  CAS  Google Scholar 

  • Eckerman, K. F., Wolbarst, A. B., & Richardson, A. C. B. (1988). Limiting values of radionuclide intake and air concentration and dose conversion factors for inhalation, submersion, and ingestion: Federal guidance report No. 11. Washington, DC: EPA.

  • Ellis, E. C. (2013). Sustaining biodiversity and people in the world’s anthropogenic biomes. Current Opinion in Environmental Sustainability, 5(3), 368–372.

    Article  Google Scholar 

  • Endo, S., Kimura, S., Takatsuji, T., Nanasawa, K., Imanaka, T., & Shizuma, K. (2012). Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi Nuclear Power Plant accident and associated estimated cumulative external dose estimation. Journal of Environmental Radioactivity, 111, 18–27.

    Article  CAS  Google Scholar 

  • Fukushima Prefecture. (2012). http://www.pref.fukushima.jp/j/koukyouyousuiiki0217.pdf.

  • Galmarini, S., Stohl, A., & Wotawa, G. (2011). Fund experiments on atmospheric hazards. Nature, 473(7347), 285.

    Article  CAS  Google Scholar 

  • Gherardi, F., & Padilla, D. K. (2013). Climate-induced changes in human behavior and range expansion of freshwater species. Ethology Ecology & Evolution, 26(1), 86–90.

    Article  Google Scholar 

  • Gjelsvik, R., & Steinnes, E. (2013). Geographical trends in 137Cs fallout from the Chernobyl accident and leaching from natural surface soil in Norway. Journal of Environmental Radioactivity, 126, 99–103.

    Article  CAS  Google Scholar 

  • Gyuricza, V., Dupré de Boulois, H., & Declerck, S. (2010). Effect of potassium and phosphorus on the transport of radiocesium by arbuscular mycorrhizal fungi. Journal of Environmental Radioactivity, 101(6), 482–487.

    Article  CAS  Google Scholar 

  • Hagan, L. (1977). Bibliography on atomic energy levels and spectra, July 1971 through June 1975 (Vol. 363). Washington, DC: US Dept. of Commerce, National Bureau of Standards.

  • Haritonidis, S., & Malea, P. (1995). Seasonal and local variation of Cr, Ni and Co concentrations in Ulva rigida C. Agardh and Enteromorpha linza (Linnaeus) from Thermaikos Gulf, Greece. Environmental Pollution, 89(3), 319–327.

    Article  CAS  Google Scholar 

  • Hinton, T. G., Garnier-Laplace, J., Vandenhove, H., Dowdall, M., Adam-Guillermin, C., Alonzo, F., et al. (2013). An invitation to contribute to a strategic research agenda in radioecology. Journal of Environmental Radioactivity, 115, 73–82.

    Article  CAS  Google Scholar 

  • Hirose, K. (2012). 2011 Fukushima Dai-ichi nuclear power plant accident: Summary of regional radioactive deposition monitoring results. Journal of Environmental Radioactivity, 111, 13–17.

    Article  CAS  Google Scholar 

  • Hirose, K., Igarashi, Y., & Aoyama, M. (2008). Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan. Applied Radiation and Isotopes, 66(11), 1675–1678.

    Article  CAS  Google Scholar 

  • Hohenemser, C., & Renn, O. (1988). Shifting public perceptions of nuclear risk: Chernobyl’s other legacy. Environment: Science and Policy for Sustainable Development, 30(3), 4–45.

    Article  Google Scholar 

  • Hou, X. L., Fogh, C. L., Kucera, J., Andersson, K. G., Dahlgaard, H., & Nielsen, S. P. (2003). Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation. Science of the Total Environment, 308(1–3), 97–109.

    Article  CAS  Google Scholar 

  • International Atomic Energy Agency. (2000). Report of the specialists’ meeting on environmental protection from the effects of ionizing radiation: International perspectives. Ref. 723-J9-SP-1114.2. Vienna, Austria: IAEA.

  • International Atomic Energy Agency. (2001a). Present and future environmental impact of the Chernobyl accident. Vienna: IAEA.

    Google Scholar 

  • International Atomic Energy Agency. (2001b). Report of the Second FAO, “The classification of soil systems on the basis of transfer factors of radionuclide from soil to reference plants”. Vienna: IAEA.

    Google Scholar 

  • International Atomic Energy Agency. (2009). Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments. Vienna: IAEA.

    Google Scholar 

  • International Atomic Energy Agency. (2011). Please add title. Vienna: Ministry of Education, Culture, Sports, Science and Technology.

    Google Scholar 

  • Japanese Ministry of Education Culture Sports Science and Technology. (2011a). Environmental radiation database. Tokyo: MEXT.

    Google Scholar 

  • Japanese Ministry of Education Culture Sports Science and Technology. (2011b). Reading of radioactivity level in fallout by prefecture. Tokyo: MEXT.

    Google Scholar 

  • Japanese Ministry of Education Culture Sports Science and Technology. (2011c). Readings of environmental radioactivity level by prefecture. Tokyo: MEXT.

    Google Scholar 

  • Japanese Ministry of Education Culture Sports Science and Technology. (2011d). Readings of sea area monitoring. Tokyo: MEXT.

    Google Scholar 

  • Japanese Ministry of Education Culture Sports Science and Technology. (2011e). Results of airborne monitoring by MEXT and the U.S. Department of Energy. Tokyo: MEXT.

    Google Scholar 

  • Japanese Ministry of Education Culture Sports Science and Technology. (2011f). Results of the 2nd airborne monitoring by the MEXT and U.S. Department of Energy. Tokyo: MEXT.

    Google Scholar 

  • Japanese Ministry of Education Culture Sports Science and Technology. (2012). Add the title. MEXT: In. Tokyo.

    Google Scholar 

  • Jargin, S. V. (2010). Overestimation of Chernobyl consequences: Poorly substantiated information published. Radiation and Environmental Biophysics, 49(4), 743–745.

    Article  Google Scholar 

  • Jasiulionis, R., & Rozkov, A. (2007). 137Cs activity concentration in the ground-level air in the Ignalina NPP region. Lithuanian Journal of Physics, 47(2), 195–202.

    Article  CAS  Google Scholar 

  • Jasiulionis, R., Rozkov, A., & Vycinas, L. (2006). Radionuclides in the ground-level air and deposition in the Ignalina NPP region during 2002–2005. Lithuanian Journal of Physics, 46, 101–108.

    Article  CAS  Google Scholar 

  • Kinoshita, N., Sueki, K., Sasa, K., Kitagawa, J.-I., Ikarashi, S., Nishimura, T., et al. (2011). Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proceedings of the National Academy of Sciences, 108(49), 19526–19529.

    Article  CAS  Google Scholar 

  • Kitajima, A., Ogawa, H., Kobayashi, T., Kawasaki, T., Kawatsu, Y., Kawamoto, T., et al. (2014). Monitoring low-radioactivity caesium in Fukushima waters. Environmental Science: Processes & Impacts, 16(1), 28–32.

    CAS  Google Scholar 

  • Koarashi, J., Atarashi-Andoh, M., Matsunaga, T., Sato, T., Nagao, S., & Nagai, H. (2012). Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions. Science of the Total Environment, 431, 392–401.

    Article  CAS  Google Scholar 

  • Koizumi, A., Harada, K., Niisoe, T., Adachi, A., Fujii, Y., Hitomi, T., et al. (2012). Preliminary assessment of ecological exposure of adult residents in Fukushima Prefecture to radioactive cesium through ingestion and inhalation. Environmental Health and Preventive Medicine, 17(4), 292–298.

    Article  CAS  Google Scholar 

  • Lee, C. P., Kuo, Y. M., Tsai, S. C., Wei, Y. Y., Teng, S. P., & Hsu, C. N. (2008). Numerical analysis for characterizing the sorption/desorption of cesium in crushed granite. Journal of Radioanalytical and Nuclear Chemistry, 275(2), 343–349.

    Article  CAS  Google Scholar 

  • Lide, D. R. (2004). CRC handbook of chemistry and physics 2004–2005: A ready-reference book of chemical and physical data. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lozano, R. L., Hernández-Ceballos, M. A., Adame, J. A., Casas-Ruíz, M., Sorribas, M., Miguel, E. G. S., et al. (2011). Radioactive impact of Fukushima accident on the Iberian Peninsula: Evolution and plume previous pathway. Environment International, 37(7), 1259–1264.

    Article  CAS  Google Scholar 

  • Maderich, V., Bezhenar, R., Heling, R., de With, G., Jung, K. T., Myoung, J. G., et al. (2013). Regional long-term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas: Application to the Fukushima Dai-ichi accident. Journal of Environmental Radioactivity, 131(1), 4–18.

  • Manolopoulou, M., Vagena, E., Stoulos, S., Ioannidou, A., & Papastefanou, C. (2011). Radioiodine and radiocesium in Thessaloniki, Northern Greece due to the Fukushima nuclear accident. Journal of Environmental Radioactivity, 102(8), 796–797.

    Article  CAS  Google Scholar 

  • McMichael, P. (2013). Food Sovereignty: A critical dialogue. International Institute of Social Studies (ISS),Hague.

  • Medici, F. (2001). The IMS radionuclide network of the CTBT. Radiation Physics and Chemistry, 61, 689–690.

    Article  CAS  Google Scholar 

  • Mihaela, T., Otto, K., & Ovidiu, T. (2012). Naturally occurring 137Cs, 90Sr and 226Ra radionuclides in raw milk in the Sibiu province of Romania. International Journal of Dairy Technology, 65(4), 511–515.

    Article  CAS  Google Scholar 

  • Ministry of Agriculture Forestry and Fisheries. (2011). A point of view on planting rice plant. Tokyo: MAFF.

    Google Scholar 

  • Ministry of Land Infrastructure Transport and Tourism. (2011). Soil map of Japan. http://tochi.mlit.go.jp/tockok/tochimizu/F3/ZOOMA/0719/index.html.

  • Moller, A. P., Hagiwara, A., Matsui, S., Kasahara, S., Kawatsu, K., Nishiumi, I., et al. (2012). Abundance of birds in Fukushima as judged from Chernobyl. Environmental Pollution, 164, 36–39.

    Article  CAS  Google Scholar 

  • Moller, A. P., Nishiumi, I., Suzuki, H., Ueda, K., & Mousseau, T. A. (2013). Differences in effects of radiation on abundance of animals in Fukushima and Chernobyl. Ecological Indicators, 24, 75–81.

    Article  CAS  Google Scholar 

  • Morino, Y., Ohara, T., & Nishizawa, M. (2011). Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophysical Research Letters, 38(7), L00G11.

    Article  CAS  Google Scholar 

  • Mucina, L., Daniel, G., Stephenson, G., Boonzaier, I., van Niekerk, A., Barret, M., et al. (2013). Floristic-ecological mapping in the Northern Kimberley. Western Australia: Field survey methods and mapping protocols.

    Google Scholar 

  • Nakanishi, T., Matsunaga, T., Koarashi, J., & Atarashi-Andoh, M. (2014). 137Cs vertical migration in a deciduous forest soil following the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity, 128, 9–14.

    Article  CAS  Google Scholar 

  • Niedrée, B. (2013). Effects of 137Cs and 90Sr on structure and functional aspects of the microflora in agricultural used soils. Julich: Forschungszentrum Jülich.

    Google Scholar 

  • Nimis, P. L. (1996). Radiocesium in plants of forest ecosystems. Studia Geobotanica, 15(3–49), 3–38.

    Google Scholar 

  • Norman, E. B., Angell, C. T., & Chodash, P. A. (2011). Observations of fallout from the Fukushima reactor accident in San Francisco Bay area rainwater. PLoS ONE, 6(9), e24330.

    Article  CAS  Google Scholar 

  • Okumura, T., Tamura, K., Fujii, E., Yamada, H., & Kogure, T. (2014). Direct observation of cesium at the interlayer region in phlogopite mica. Microscopy, 63(1), 65–72.

    Article  CAS  Google Scholar 

  • Paasikallio, A., Rantavaara, A., & Sippola, J. (1994). The transfer of cesium-137 and strontium-90 from soil to food crops after the Chernobyl accident. Science of the Total Environment, 155(2), 109–124.

    Article  CAS  Google Scholar 

  • Peterson, D., Wolken, J., Hollingsworth, T., Giardina, C., Littell, J., Joyce, L., et al. (2014). Regional highlights of climate change. In D. L. Peterson, J. M. Vose, & T. Patel-Weynand (Eds.), Climate change and United States forests (Vol. 57, pp. 113–148)., Advances in global change research Dordrecht: Springer.

    Chapter  Google Scholar 

  • Pittauerova, D., Hettwig, B., & Fischer, H. W. (2011). Fukushima fallout in Northwest German environmental media. Journal of Environmental Radioactivity, 102(9), 877–880.

    Article  CAS  Google Scholar 

  • Povinec, P. P., Sýkora, I., Holý, K., Gera, M., Kováčik, A., & Brest’áková, L. (2012). Aerosol radioactivity record in Bratislava/Slovakia following the Fukushima accident—A comparison with global fallout and the Chernobyl accident. Journal of Environmental Radioactivity, 114, 81–88.

    Article  CAS  Google Scholar 

  • Pröhl, G. (2009). Interception of dry and wet deposited radionuclides by vegetation. Journal of Environmental Radioactivity, 100(9), 675–682.

    Article  CAS  Google Scholar 

  • Real, J., Persin, F., & Camarasa-Claret, C. (2002). Mechanisms of desorption of 134Cs and 85Sr aerosols deposited on urban surfaces. Journal of Environmental Radioactivity, 62(1), 1–15.

    Article  CAS  Google Scholar 

  • Ritchie, J. C., & McHenry, J. R. (1990). Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journal of Environment Quality, 19(2), 215.

    Article  CAS  Google Scholar 

  • Rochette, P., van Bochove, E., Prévost, D., Angers, D. A., Côté, D., & Bertrand, N. (2000). Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year. Soil Science Society of America Journal, 64(4), 1396.

    Article  CAS  Google Scholar 

  • Sanzharova, N., Shubina, O., Vandenhove, H., Olyslaegers, G., Fesenko, S., Shang, Z. R., et al. (2009). Root uptake: Temperate environment. Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments (pp. 139–206). Vienna: IAEA.

    Google Scholar 

  • Shaw, G. (2007). Radionuclides in forest ecosystems. In G. Shaw (Ed.), Radioactivity in the enviornment (pp. 127–155). Amsterdam: Elsevier.

    Google Scholar 

  • Shcheglov, A. I., Tsvetnova, O. B., & Klyashtorin, A. (2013). The fate of Cs-137 in forest soils of Russian Federation and Ukraine contaminated due to the Chernobyl accident. Journal of Geochemical Exploration.

  • Simpson, M. F., & Law, J. D. (2013). Reprocessing of nuclear fuel. In N. Tsoulfanidis (Ed.), Nuclear energy (pp. 153–173). New York: Springer.

    Chapter  Google Scholar 

  • Sinclair, L. E., Seywerd, H. C., Fortin, R., Carson, J. M., Saull, P. R., Coyle, M. J., et al. (2011). Aerial measurement of radioxenon concentration off the west coast of Vancouver Island following the Fukushima reactor accident. Journal of Environmental Radioactivity, 102(11), 1018–1023.

    Article  CAS  Google Scholar 

  • Sokolov, N. V., Grodsinsky, D. M., & Sorochinsky, B. V. (2001). How does low does chronic irradiation under the condition of 10 km Chernobyl exclusion zone influence on processes of seed aging? In Fifteen years after the Chernobyl accident: Lessons learned (p. 117). Kiev.

  • Steiner, M., Linkov, I., & Yoshida, S. (2002). The role of fungi in the transfer and cycling of radionuclides in forest ecosystems. Journal of Environmental Radioactivity, 58(2–3), 217–241.

    Article  CAS  Google Scholar 

  • Steinhauser, G., Merz, S., Hainz, D., & Sterba, J. (2013). Artificial radioactivity in environmental media (air, rainwater, soil, vegetation) in Austria after the Fukushima nuclear accident. Environmental Science and Pollution Research, 20(4), 2527–2534.

    Article  CAS  Google Scholar 

  • Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5, 2461–2474.

    Article  CAS  Google Scholar 

  • Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt, S., et al. (2011). Xenon-133 and caesium-137 releases into the atmosphere from Fukushima Dai-ichi nuclear power plant: Determination of the source term, atmospheric dispersion, and deposition. Atmospheric Chemistry and Physics, 11, 28319–28394.

    Article  CAS  Google Scholar 

  • Strand, P., Brown, J. E., Drozhko, E., Mokrov, Y., Salbu, B., Oughton, D., et al. (1999). Biogeochemical behaviour of 137Cs and 90Sr in the artificial reservoirs of Mayak PA, Russia. Science of the Total Environment, 241(1–3), 107–116.

    Article  CAS  Google Scholar 

  • Szefer, P. (2002). Metal pollutants and radionuclides in the 1982 Baltic Sea-an overview. Oceanologia, 44(2), 129–178.

  • Tagami, K., Uchida, S., Ishii, N., & Zheng, J. (2013). Estimation of Te-132 distribution in Fukushima Prefecture at the early stage of the Fukushima Daiichi nuclear power plant reactor failures. Environmental Science and Technology, 47(10), 5007–5012.

    Article  CAS  Google Scholar 

  • Taira, T., & Hatoyama, Y. (2011). Nuclear energy: Nationalize the Fukushima Daiichi atomic plant. Nature, 480(7377), 313–314.

    Article  CAS  Google Scholar 

  • Tateda, Y., Tsumune, D., & Tsubono, T. (2013). Simulation of radioactive cesium transfer in the southern Fukushima coastal biota using a dynamic food chain transfer model. Journal of Environmental Radioactivity, 124, 1–12.

    Article  CAS  Google Scholar 

  • Tositti, L., Brattich, E., Cinelli, G., Previti, A., & Mostacci, D. (2012). Comparison of radioactivity data measured in PM10 aerosol samples at two elevated stations in northern Italy during the Fukushima event. Journal of Environmental Radioactivity, 114, 105–112.

    Article  CAS  Google Scholar 

  • Tracy, B. L., Carini, F., Barabash, S., Berkovskyy, V., Brittain, J. E., Chouhan, S., et al. (2013). The sensitivity of different environments to radioactive contamination. Journal of Environmental Radioactivity, 122, 1–8.

    Article  CAS  Google Scholar 

  • Tsukada, H., Hisamatsu, S., & Inaba, J. (2003). Transfer of 137Cs and stable Cs in soil-grass-milk pathway in Aomori, Japan. Journal of Radioanalytical and Nuclear Chemistry, 255, 455–458.

    Article  CAS  Google Scholar 

  • Tyler, A. N., Cartier, S., Davidson, D. A., Long, D. J., & Tipping, R. (2001). The extent and significance of bioturbation on Cs-137 distribution in upland soils. Catena, 43, 81–99.

    Article  CAS  Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. New York: United Nations.

    Google Scholar 

  • Valentin, J. (2003). A framework for assessing the impact of ionising radiation on non-human species. ICRP Publication 91. Annals of the ICRP, 33(3), 207–266.

    Article  CAS  Google Scholar 

  • Vallés, I., Camacho, A., Ortega, X., Serrano, I., Blázquez, S., & Pérez, S. (2009). Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain). Journal of Environmental Radioactivity, 100(2), 102–107.

    Article  CAS  Google Scholar 

  • Velasco, H., Cid, A. S., Anjos, R. M., Zamboni, C. B., Rizzotto, M., Valladares, D. L., et al. (2012). Variability of 137Cs and 40K soil-to-fruit transfer factor in tropical lemon trees during the fruit development period. Journal of Environmental Radioactivity, 104, 64–70.

    Article  CAS  Google Scholar 

  • Vinichuk, M., Taylor, A. F. S., Rosén, K., & Johanson, K. J. (2010). Accumulation of potassium, rubidium and caesium (133Cs and 137Cs) in various fractions of soil and fungi in a Swedish forest. Science of the Total Environment, 408(12), 2543–2548.

    Article  CAS  Google Scholar 

  • Wampler, J. M., Krogstad, E. J., Elliott, W. C., Kahn, B., & Kaplan, D. I. (2012). Long-term selective retention of natural Cs and Rb by highly weathered coastal plain soils. Environmental Science and Technology, 46(7), 3837–3843.

    Article  CAS  Google Scholar 

  • Wells, T., & Hancock, G. (2014). Comparison of vertical transport of 137Cs and organic carbon in agricultural cracking soils. Geoderma, 214–215, 228–238.

    Article  CAS  Google Scholar 

  • Wicker, W. F., & Schultz, V. (1982). Radioecology: Nuclear energy and environment (Vol. 1, pp. 153–156). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Willey, N. (2010). Phylogeny can be used to make useful predictions of soil-to-plant transfer factors for radionuclides. Radiation and Environmental Biophysics, 49(4), 613–623.

    Article  CAS  Google Scholar 

  • Wood, M. D., Beresford, N. A., Howard, B. J., & Copplestone, D. (2013). Evaluating summarised radionuclide concentration ratio datasets for wildlife. Journal of Environmental Radioactivity, 126, 314–325.

    Article  CAS  Google Scholar 

  • Yablokov, A. V., Nesterenko, V. B., Nesterenko, A. V., & Sherman-Nevinger, J. D. (2010). Chernobyl: Consequences of the catastrophe for people and the environment. Hoboken, NJ: Wiley.

    Google Scholar 

  • Yan, D., Zhao, Y., Lu, A., Wang, S., Xu, D., & Zhang, P. (2013). Effects of accompanying anions on cesium retention and translocation via droplets on soybean leaves. Journal of Environmental Radioactivity, 126, 232–238.

    Article  CAS  Google Scholar 

  • Yang, L., Zhu, L., & Liu, Z. (2011). Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake, China. Chemosphere, 83(6), 806–814.

    Article  CAS  Google Scholar 

  • Yasunari, T. J., Stohl, A., Hayano, R. S., Burkhart, J. F., Eckhardt, S., & Yasunari, T. (2011). Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences, 108(49), 19530–19534.

    Article  CAS  Google Scholar 

  • Zaborska, A., Winogradow, A., & Pempkowiak, J. (2014). Caesium-137 distribution, inventories and accumulation history in the Baltic Sea sediments. Journal of Environmental Radioactivity, 127, 11–25.

    Article  CAS  Google Scholar 

  • Zalewska, T., & Lipska, J. (2006). Contamination of the southern Baltic Sea with 137Cs and 90Sr over the period 2000–2004. Journal of Environmental Radioactivity, 91(1–2), 1–14.

    Article  CAS  Google Scholar 

  • ZAMG. (2011). Accident in the Japanese NPP Fukushima: Spread of radioactivity/first source estimates from CTBTO data show large source terms at the beginning of the accident/weather currently not favourable/low level radioactivity meanwhile observed over U.S. East Coast and Hawaii. Wien: ZAMG.

  • Zheng, J., Tagami, K., Watanabe, Y., Uchida, S., Aono, T., Ishii, N., et al. (2012). Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Scientific Reports, 2, 304.

    Google Scholar 

Download references

Acknowledgments

This research is supported by High Impact Research MoE Grant UM.C/625/1/HIR/MoE/SC/04 from the Ministry of Education Malaysia. Thanks also for the support by UMRG (RG257-13AFR) and FRGS (FP038-2013B).

Conflict of interest

The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aqeel Ashraf.

Additional information

This article has been retracted by the Editor-in-Chief. After a thorough investigation carried out according to the Committee on Publication Ethics guidelines, we have strong reason to believe that the peer review process was compromised.

An erratum to this article can be found online at http://dx.doi.org/10.1007/s10653-016-9811-7.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.A., Khan, A.M., Ahmad, M. et al. RETRACTED ARTICLE: Release, deposition and elimination of radiocesium (137Cs) in the terrestrial environment. Environ Geochem Health 36, 1165–1190 (2014). https://doi.org/10.1007/s10653-014-9620-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9620-9

Keywords

Navigation