Skip to main content

Advertisement

Log in

Arsenic (As), antimony (Sb), and lead (Pb) availability from Au-mine Technosols: a case study of transfer to natural vegetation cover in temperate climates

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soils from old Au-mine tailings (La Petite Faye, France) were investigated in relation to the natural vegetation cover to evaluate the risk of metals and metalloids (Pb, As, Sb) mobilizing and their potential transfer to native plants (Graminea, Betula pendula, Pteridium aquilinum, Equisetum telmateia). The soils are classified as Technosols with high contamination levels of As, Pb, and Sb. The single selective extractions tested to evaluate available fraction (CaCl2, acetic acid, A-Rhizo, and DTPA) showed low labile fractions (<5 % of bulk soil contents), but still significant levels were observed (up to 342.6 and 391.9 mg/kg for As and Pb, respectively) due to the high contamination levels of soils. Even at high soil contaminations (considered as phytotoxic levels for plants), translocation factors for native plants studied are very low resulting in low concentrations of As, Sb, and Pb in their aerial part tissues. This study demonstrates the important role of (1) native plant cover in terms of “stabilization” of these contaminants, and (2) the poor effectiveness of extraction procedures used for this type of soil assemblages, i.e., rich in specific mineral phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andres, P., & Jorba, M. (2000). Mitigation strategies in some motorway embankments. Restoration Ecology, 8, 268–275.

    Article  Google Scholar 

  • Baize, D., & Sterckeman, T. (2001). Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements. The Science of The Total Environment, 264, 127–139.

    Article  CAS  Google Scholar 

  • Baker and Whiting. (2002). In search of holy grail—a further step in understanding metal hyperaccumulation? New Phytologist, 155, 1–4.

    Article  Google Scholar 

  • Basta, N. T., Ryan, J. A., & Chaney, R. L. (2005). Trace element chemistry in residual-treated soil: Key concepts and metal bioavailability. Journal of Environmental Quality, 34, 49–63.

    CAS  Google Scholar 

  • Beckett, P. H. T. (1989). The use of extractants in studies on trace metals in soils, sewage sludges, and sludge-treated soils. Advances in soils sciences, 9, 143–176.

    Article  Google Scholar 

  • Boussen, S., Soubrand, M., Bril, H., Ouerfelli, K., & Abdeljaouad, S. (2013). Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma, 192, 227–236.

    Article  CAS  Google Scholar 

  • Chang, J. S., Yoon, I. H., & Kim, K. W. (2009). Heavy metal and arsenic accumulating fern species as potential ecological indicators in As-contaminated abandoned mines. Ecological Indicators, 9, 1275–1279.

    Article  CAS  Google Scholar 

  • Chiu, K. K., Ye, Z. H., & Wong, M. H. (2006). Growth of Vetiveria zizanioides and Phragamities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: A greenhouse study. Bioresource Technology, 97, 158–170.

    Article  CAS  Google Scholar 

  • Conesa, H. M., Faz, Á., & Arnaldos, R. (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district (SE Spain). Science of the Total Environment, 36, 1–11.

    Article  Google Scholar 

  • Davies, B. E., 1980. Applied Soil Trace Elements, John Wiley & Sons, New York, 1980, 482 pp.

  • Dudka, S., & Adriano, D. C. (1997). Environmental impacts of metal ore mining and processing: A review. Journal of Environmental Quality, 26, 590–602.

    Article  CAS  Google Scholar 

  • Fang, J., Wen, B., Shan, X.-Q., Lin, J.-M., & Owens, G. (2007). Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability. Application to non-contaminated soils. Environmental Pollution, 150, 209–217.

    Article  CAS  Google Scholar 

  • FAO, 2006. World Reference Base for Soil Researches. World Soil Resources Report. Vol. 103. FAO, Rome.

  • Feng, M.-H., Shan, X.-Q., Zhang, S., & Wen, B. (2005). A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailbility of metals in soil to barley. Environmental Pollution, 137, 231–240.

    Article  CAS  Google Scholar 

  • Frentiu, T., Ponta, M., Levei, E., & Cordos, E. A. (2009). Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure. Chemical Paper, 63, 239–248.

    Article  CAS  Google Scholar 

  • Hammel, W., Debus, R., & Steubing, L. (2000). Mobility of antimony in soil and its availability to plants. Chemosphere, 41, 1791–1798.

    Article  CAS  Google Scholar 

  • Joussein, E., Soubrand, M., Lévèque, F., Mathé, V., Lenain, J-F., Salvador-Blanes, S. et al. (2012). XRF portable et magnétisme environnemental sur des Anthroposols à contamination polymétallique : relation physique, chimique et minéralogique. 11èmes Journées d’Etude des Sols, 19–23 mars 2012, Versailles, pp 350–351, available online.

  • Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). NY: CRC Press.

    Google Scholar 

  • Karczewska, A., Lewińska, K., Gałka, B. (2013). Arsenic extractability and uptake by velvetgrass Holcus lanatus and ryegrass Lolium perenne in variously treated soils polluted by tailing spills. Journal of Hazardous Materials,, 262, 1014–1021

    Google Scholar 

  • Lebourg, A., Sterckeman, T., Ciesielski, H., & Proix, N. (1996). Intérêt des différents réactifs d’extraction chimique pour l’évaluation de la biodisponibilité des métaux en traces du sol. Agronomie, 16, 201–215.

    Article  Google Scholar 

  • Lei, D., & Duan, C. (2008). Restoration potential of pioneer plants growing on lead-zinc mine tailings in Lamping, southwest China. Journal of Environmental Sciences, 20, 1102–1109.

    Google Scholar 

  • Li, M. S. (2006). Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. The Science of the Total Environment, 357, 38–53.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Madejón, P., Murillo, J. M., Marañón, T., Cabrera, F., & Soriano, M. A. (2003). Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill. The Science of the Total Environment, 307, 239–257.

    Article  Google Scholar 

  • Maiz, I., Arambarri, I., Garcia, R., & Millán, E. (2000). Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environmental Pollution, 110, 3–9.

    Article  CAS  Google Scholar 

  • Marguí, E., Queralt, I., Carvalho, M. L., & Hidalgo, M. (2007). Assessment of metal availability to vegetation (Betula pendula) in Pb–Zn ore concentrate residues with different features. Environmental Pollution, 145, 179–184.

    Article  Google Scholar 

  • Martinez-Ruiz, C., Fernandez-Santos, B., Putwain, P. D., & Fernandez-Gomez, M. J. (2007). Natural and man-induced revegetation on mining wastes: Changes in the floristic composition during early succession. Ecological Engineering, 30, 286–294.

    Article  Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—An emerging remediation technology. Environmental Health Perspective, 116, 278–283.

    Article  CAS  Google Scholar 

  • Mihaljevič, M., Ettler, V., Sisr, L., Šebek, O., Strnad, L., & Vonásková, V. (2009). Effect of low concentrations of phosphate ions on extraction of arsenic from naturally contaminated soil. Bulletin of Environmental Contamination and Toxicology, 83, 422–427.

    Article  Google Scholar 

  • Müller, K., Daus, B., Mattusch, J., Stärk, H.-J., & Wennrich, R. (2009). Simultaneous determination of inorganic and organic antimony species by using anion exchange phases for HPLC-ICP-MS and their application to plant extracts of Pteris vittata. Talanta, 78, 820–826.

    Article  Google Scholar 

  • Néel, C., Bril, H., Courtin-Nomade, A., & Dutreuil, J.-P. (2003). Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings. Geoderma, 111, 1–20.

    Article  Google Scholar 

  • Novozamsky, I., Lexmond, T. H. M., & Houba, V. J. G. (1993). A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. International Journal Environmental Analytical Chemistry, 51, 47–58.

    Article  CAS  Google Scholar 

  • Paktunc, D., & Bruggeman, K. (2010). Solubility of nanocrystalline scorodite and amorphous ferric arsenate: Implications for stabilization of arsenic in mine wastes. Applied Geochemistry, 25, 674–683.

    Article  CAS  Google Scholar 

  • Pérez-Cid, B., Lavilla, I., & Bendicho, C. (1998). Speeding up of a three-stage sequential extraction method for metal speciation using focused ultrasound. Analytica Chimica Acta, 360, 35–41.

    Article  Google Scholar 

  • Rao, C. R. M., Sahuquillo, A., Sanchez, J., & Lopez, F. (2008). A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and relate materials. Water Air Soil Pollution, 189, 291–333.

    Article  CAS  Google Scholar 

  • Referentiel Pédologique, 2008. Association Française pour l’Etude du Sol, Ed Quæ.

  • Remon, E., Bouchardon, J.-L., Cornier, B., Guy, B., Leclerc, J.-C., & Faure, O. (2005). Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration. Environmental Pollution, 137, 316–323.

    Article  CAS  Google Scholar 

  • Rodríguez, L., Ruiz, E., Alonso-Azcárate, J., & Rincón, J. (2009). Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. Journal of Environmental Management, 90, 1106–1116.

    Article  Google Scholar 

  • Roussel, C., Néel, C., & Bril, H. (2000). Minerals controlling arsenic and lead solubility in an abandonned gold mine tailings. The Science of the Environment, 263, 209–219.

    CAS  Google Scholar 

  • Saunders, J. R., Knopper, L. D., Koch, I., & Reimer, K. J. (2010). Arsenic transformations and biomarkers in meadow voles (Microtus pennsylvanicus) living on an abandoned gold mine site in Montague, Nova Sciota, Canada. Science of the Total Environment, 408, 829–835.

    Article  CAS  Google Scholar 

  • Scalenghe, R., & Ferraris, S. (2009). The first forty years of a Technosol. Pedosphere, 19, 40–52.

    Article  Google Scholar 

  • Singh, A. N., Raghubanshi, A. S., & Singh, J. S. (2002). Plantations as a tool for mine spoil restoration. Current Science, 82, 1436–1441.

    CAS  Google Scholar 

  • Unterbrunner, R., Puschenreiter, M., Sommer, P., Wieshammer, G., Tlustoš, P., Zupan, M., et al. (2007). Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environmental Pollution, 148, 107–114.

    Article  CAS  Google Scholar 

  • Vázquez, S., Moreno, E., & Carpena, R. O. (2008). Bioavailability of metals and As from acidified multicontaminated soils: use of white lupin to validate several extraction methods. Environmental Geochemistry and Health, 30, 193–198.

    Article  Google Scholar 

  • Vega, F. A., Covelo, E. F., & Andrade, M. L. (2006). Competitive sorption and desorption of heavy metals in mine soil: Influence of mine soil characteristics. Journal of Colloid and Interface Science, 298, 582–592.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, Y., Zeng, G., Chai, L., Xiao, X., Song, X., et al. (2008). Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Chemosphere, 72, 1260–1266.

    Article  CAS  Google Scholar 

  • Wilson, S. C., Lockwood, P. V., Ashley, P. M., & Tighe, M. (2010). The chemistry and behaviour of antimony in the soil environment with comparison to arsenic: A critical review. Environmental Pollution, 158, 1169–1181.

    Article  CAS  Google Scholar 

  • Yang, J. S., Lee, J. Y., Baek, K., Kwon, T. S., & Choi, J. (2009). Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions. Journal of Hazardous Materials, 171, 443–451.

    Article  CAS  Google Scholar 

  • Yao, F. X., Macías, F., Virgel, S., Blanco, F., Jiang, X., & Camps Arbestain, M. (2009). Chemical changes in heavy metals in the leachates from Technosols. Chemosphere, 77, 29–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Contrat de plan Etat - Région Limousin,” the “Conseil Regional du Limousin,” the C2R Research Program, and finally the GOLDorak program. The authors thank the owner of the site for allowing access, as well as the seven anonymous reviewers for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Joussein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanat, N., Joussein, E., Soubrand, M. et al. Arsenic (As), antimony (Sb), and lead (Pb) availability from Au-mine Technosols: a case study of transfer to natural vegetation cover in temperate climates. Environ Geochem Health 36, 783–795 (2014). https://doi.org/10.1007/s10653-014-9596-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9596-5

Keywords

Navigation