A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts

Abstract

Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, \( {\text{Hg}}_{\text{gas}}^{0} \)), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration of atmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m−3, that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m−3) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m−3. We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au–Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical–chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Acosta, J. A., Martínez-Martínez, S., Faz, A., Millán, R., Muñoz, M. A., Terán, T., et al. (2011). Characterization of the potential mercury contamination in the Apolobamba gold mining area, Bolivia. Spanish Journal of Soil Science, 1, 86–99.

    Google Scholar 

  2. Aiuppa, A., Bagnato, E., Witt, M. L. I., Mather, T. A., Parello, F., Pyle, D. M., et al. (2007). Real-time simultaneous detection of volcanic Hg and SO2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophysical Research Letters, 34, L21307.

    Article  Google Scholar 

  3. Al-Batanony, M. A., Abdel-Rasul, G. M., Abu-Salem, M. A., Al-Dalatony, M. M., & Allam, H. K. (2013). Occupational exposure to mercury among workers in a fluorescent lamp factory, Quisna industrial zone, Egypt. International Journal of Occupational & Environmental Medicine, 4, 149–156.

    CAS  Google Scholar 

  4. Almeida, M. D., Marins, R. V., Paraquettia, H. H. M., & Lacerda, L. D. (2008). Methodology optimization and application for measurement of gaseous elemental mercury in the Amazon atmosphere. Journal of the Brazilian Chemical Society, 19, 1290–1297.

    CAS  Article  Google Scholar 

  5. Amon, R. M. W., & Benner, R. (1996). Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochimica et Cosmochimica Acta, 60, 1783–1792.

    CAS  Article  Google Scholar 

  6. ATSDR/EPA National Mercury. Cleanup Policy Workgroup. Action Levels For Elemental Mercury Spills. March 22, 2012. http://www.atsdr.cdc.gov/emergency_response/Action_Levels_for_Elemental_Mercury_Spills_2012.pdf. Accessed 28 June 2013.

  7. Aymaz, S., Gross, O., Krakamp, B., Ortmann, M., Dienes, H. P., & Weber, M. (2001). Membranous nephropathy from exposure to mercury in the fluorescent-tube-recycling industry. Nephrology, Dialysis, Transplantation, 16, 2253–2255.

    CAS  Article  Google Scholar 

  8. Berg, T., Sekkesæter, S., Steinnes, E., Valdal, A. K., & Wibetoe, G. (2008). Springtime depletion of mercury in the European Arctic as observed at Svalbard. Science of the Total Environment, 304, 43–51.

    Article  Google Scholar 

  9. Bernhoft, R. A. (2012). Mercury toxicity and treatment: A review of the literature. International Journal of Environmental and Public Health. Article no. 460508.

  10. Bose-O’Reilly, S., Drasch, G., Beinhoff, C., Rodrigues-Filho, S., Roider, G., Lettmeier, B., et al. (2010a). Health assessment of artisanal gold miners in Indonesia. Science of the Total Environment, 408, 713–725.

    Article  Google Scholar 

  11. Bose-O’Reilly, S., Drasch, G., Beinhoff, C., Tesha, A., Drasch, K., Roider, G., et al. (2010b). Health assessment of artisanal gold miners in Tanzania. Science of the Total Environment, 408, 796–805.

    Article  Google Scholar 

  12. Boudin, L. B. (1952). Seditious doctrines and the clear and present danger rule. Virginia Law Review, 38, 143–186.

    Article  Google Scholar 

  13. Brown, R. J. C., Pirrone, N., van Hoek, C., Horvat, M., Kotnik, J., Wangberg, I., et al. (2010a). Standardisation of a European measurement method for the determination of mercury in deposition: Results of the field trial campaign and determination of a measurement uncertainty and working range. Accreditation and Quality Assurance, 15, 359–366.

    CAS  Article  Google Scholar 

  14. Brown, R. J. C., Pirrone, N., Van Hoek, C., Sprovieri, F., Fernandez, R., & Toté, K. (2010b). Standardisation of a European measurement method for the determination of total gaseous mercury: Results of the field trial campaign and determination of a measurement uncertainty and working range. Journal of Environmental Monitoring, 12(3), 689–695.

    CAS  Article  Google Scholar 

  15. Carpi, A. (1997). Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere. Water, Air, and Soil pollution, 98, 241–254.

    CAS  Google Scholar 

  16. Chan, H. M., & Egeland, G. M. (2004). Fish consumption, mercury exposure, and heart diseases. Nutrition Reviews, 62, 68–72.

    Article  Google Scholar 

  17. Clark, S. (1986). Preservation of herbarium specimens: an archive conservators approach. Taxon, 35, 675–681.

    Article  Google Scholar 

  18. Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36, 609–662.

    CAS  Article  Google Scholar 

  19. Cole, A. S., Steffen, A., Pfaffhuber, K. A., Berg, T., Pilote, M., Poissant, L., et al. (2013). Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites. Atmospheric Chemistry and Physics, 13, 1535–1545.

    CAS  Article  Google Scholar 

  20. Dai, Z. H., Feng, X: B., Sommar, J., & Fu, X. W. (2012). Spatial distribution of mercury deposition fluxex in Wanshan Hg mining area, Guizhu province, China. Atmospheric Chemistry and Physics, 12, 6207–6218.

    CAS  Article  Google Scholar 

  21. DEFRA (2010). The mercury export and data (enforcement) regulations 2010: guidance notes, Department for Environment, Food and Rural Affairs (United Kingdom), http://archive.defra.gov.uk/environment/quality/chemicals/documents/mercury-export-data-regs.pdf. Accessed 25 Feb 2013.

  22. Ebinghaus, R., Jennings, S. G., Kock, H. H., Derwent, R. G., Manning, A. J., & Spain, T. G. (2011). Decreasing trends in total gaseous mercury observations in baseline air at Mace Head, Ireland from 1996 to 2009. Atmospheric Environment, 45, 3475–3480.

    CAS  Article  Google Scholar 

  23. Echeverria, D., Heyer, N. J., Martin, M. D., Naleway, C. A., Woods, J. S., & Bittner, A. C., Jr. (1995). Behavioral effects of low-level exposure to Hg° among dentists. Neurotoxicology and Teratology, 17, 161–168.

    CAS  Article  Google Scholar 

  24. EN 15852. (2010). Ambient air quality—Standard method for the determination of total gaseous mercury. http://www.en-standard.eu/csn-en-15852-ambient-air-quality-standard-method-for-the-determination-of-total-gaseous-mercury/. Accessed 28 June 2013.

  25. Engle, M. A., & Gustin, M. S. (2002). Scaling of atmospheric mercury emissions from three naturally enriched areas: Flowery Peak, Nevada; Peavine Peak, Nevada; and Long Valley Caldera, California. Science of the Total Environment, 290, 91–104.

    CAS  Article  Google Scholar 

  26. European Standards. (2013). CSN EN 15852—Ambient air quality—Standard method for the determination of total gaseous mercury. http://www.en-standard.eu/en-15852-ambient-air-quality-standard-method-for-the-determination-of-total-gaseous-mercury. Accessed 25 Feb 2013.

  27. Feng, X., Foucher, D., Hintelmann, H., Yan, H., He, T., & Qiu, G. (2010). Tracing mercury contamination sources in sediments using mercury isotope compositions. Environmental Science and Technology, 44, 3363–3368.

    CAS  Article  Google Scholar 

  28. Feng, X., Shang, L.,Wang, S., Tang, S., Zheng, W. (2004). Temporal variation of total gaseous mercury in the air of Guiyang, China. Journal of Geophysical Research D: Atmospheres, 109(D03303), 1–9.

    Google Scholar 

  29. Fernández-Patier, R., & Ramos-Díaz, M. C. (2012). Informe del Ejercicio de lntercomparación de Mercurio Gaseoso total en aire ambiente “IN SITU” (año 2011). Ined. Repport, Instituto de Salud Carlos III, Centro Nacional de Sanidad Ambiental, Área de Contaminación Atmosférica. Ministerio de Economía y Competitividad, España, 7 pp. In Spanish.

  30. Fu, X., Feng, X., Sommar, J., & Wang, S. (2012). A review of studies on atmospheric mercury in China. Science of the Total Environment, 421–422, 73–81.

    Article  Google Scholar 

  31. Fu, X. W., Feng, X. B., & Zhang, H. (2011). Atmospheric total gaseous mercury concentration in Guiyang: measurements intercomparison with Lumex RA-915AM and Tekran 2537A. Chinese Journal of Ecology, 30, 939–943.

    Google Scholar 

  32. Garcia-Sanchez, A., Contreras, F., Adams, M., & Santos, F. (2006). Airborne total gaseous mercury and exposure in a Venezuelan mining area. International Journal of Environmental Health Research, 16, 361–373.

    CAS  Article  Google Scholar 

  33. García-Sánchez, A., Contreras, F., Adams, M., & Santos, F. (2006). Atmospheric mercury emissions from polluted gold mining areas (Venezuela). Environmental Geochemistry and Health, 28, 529–540.

    Article  Google Scholar 

  34. Gosar, M., Pirc, S., Sajn, R., Bidovec, M., Mashyanov, N. R., & Sholupov, S. E. (1997). Distribution of mercury in atmosphere over Idrija, Slovenia. Environmental Geochemistry and Health, 19, 101–110.

    CAS  Article  Google Scholar 

  35. Grandjean, P., Satoh, H., Murata, K., & Eto, K. (2010). Adverse effects of methylmercury: Environmental health research implications. Environmental Health Perspectives, 118, 1137–1145.

    CAS  Article  Google Scholar 

  36. Gray, J. E., Hines, M. E., Higueras, P. L., Adatto, I., & Lasorsa, B. K. (2004). Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén Mining District, Spain. Environment Science and Technology, 38, 4285–4292.

    CAS  Article  Google Scholar 

  37. Gul Oz, S., Tozlu, M., Yalcin, S. S., Sozen, T., & Sain Guven, G. (2012). Mercury vapor inhalation and poisoning of a family. Inhalation Toxicology, 24, 652–658.

    CAS  Article  Google Scholar 

  38. Gustin, M. S., Lindberg, S. E., Austin, K., Coolbaugh, M., Vette, A., & Zhang, H. (2000). Assessing the contribution of natural sources to regional atmospheric mercury budgets. Science of the Total Environment, 259, 61–71.

    CAS  Article  Google Scholar 

  39. Hamdy, M. K., & Noyes, R. (1975). Formation of methyl mercury by bacteria. Applied Microbiology, 30, 424–432.

    CAS  Google Scholar 

  40. Harada, M. (1995). Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. CRC Critical Reviews in Toxicology, 25, 1–24.

    CAS  Article  Google Scholar 

  41. Health Canada (2009). Mercury. Environmental and Workplace Health, Health Canada Federal Department, http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/mercury-mercure/i-eng.php. Accessed 25 Feb 2013.

  42. HESIS (2008). Understanding toxic substances. Hazard Evaluation System and Information Service, California Department of Public Health, http://www.cdph.ca.gov/programs/hesis/Documents/introtoxsubstances.pdf.

  43. Higueras, P., Esbrí, J. M., Oyarzun, R., Llanos, W., Martínez-Coronado, A., Lillo, J., et al. (2013). Industrial and natural sources of gaseous elemental mercury in the Almadén District (Spain): An updated report on this issue after the cease of mining and metallurgical activities in 2003 and major land reclamation works. Environmental Research, 125, 197–208.

    CAS  Article  Google Scholar 

  44. Higueras, P., Llanos, W., García, M. E., Millán, R., & Serrano, C. (2012). Mercury vapours emissions from the Ingenios in Potosí (Bolivia). Journal of Geochemical Exploration, 116, 1–7.

    Article  Google Scholar 

  45. Higueras, P., Oyarzun, R., Lillo, J., Oyarzún, J., & Maturana, H. (2005). Atmospheric mercury data for the Coquimbo region, Chile: influence of mineral deposits and metal recovery practices. Atmospheric Environment, 39, 7587–7596.

    CAS  Article  Google Scholar 

  46. Higueras, P., Oyarzun, R., Lillo, J., Sánchez Hernández, J. C., Molina, J. A., Esbrí, J. M., et al. (2006). The Almadén district (Spain): Anatomy of one of the world’s largest Hg-contaminated sites. Science of the Total Environment, 356, 112–124.

    CAS  Article  Google Scholar 

  47. Higueras, P., Oyarzun, R., Munhá, J., & Morata, D. (2000). Palaeozoic magmatic-related hydrothermal activity in the Almadén syncline (Spain): a long-lasting Silurian to Devonian process? Trans. Instn. Min. Metall. Sect. B: Applied Earth Science, 109, 199–202.

  48. Higueras, P., Oyarzun, R., Oyarzún, J., Maturana, H., Lillo, J., & Morata, D. (2004). Environmental assessment of copper–gold–mercury mining in the Andacollo and Punitaqui districts, northern Chile. Applied Geochemistry, 19, 1855–1864.

    CAS  Article  Google Scholar 

  49. Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., et al. (2010). Global atmospheric model for mercury including oxidation by bromine atoms. Atmospheric Chemistry and Physics, 10, 12037–12057.

    CAS  Article  Google Scholar 

  50. Kasznia-Kocot, J., Dbkowska, B., Muszyńska-Graca, M., Brewczyński, P. Z., & Złotkowska, R. (2008). Domestic accidental mercury vapor intoxication in families. Journal of Public Health, 30, 113.

    Article  Google Scholar 

  51. Kim, K.-H., Ebinghaus, R., Schroeder, W. H., Blanchard, P., Kock, H. H., Steffen, A., et al. (2005). Atmospheric mercury concentrations from several observatory sites in the Northern Hemisphere. Journal of Atmospheric Chemistry, 50, 1–24.

    CAS  Article  Google Scholar 

  52. Kim, K.-H., Mishra, V. K., & Hong, S. (2006). The rapid and continuous monitoring of gaseous elemental mercury (GEM) behavior in ambient air. Atmospheric Environment, 40, 3281–3293.

    CAS  Article  Google Scholar 

  53. Kock, H. H., Bieber, E., Ebinghaus, R., Thees, T. G., & Spain, B. (2005). Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany. Atmospheric Environment, 39, 7549–7556.

    CAS  Article  Google Scholar 

  54. Kocman, D., Vreča, P., Fajon, V., & Horvat, M. (2011). Atmospheric distribution and deposition of mercury in the Idrija Hg mine region, Slovenia. Environmental Research, 111, 1–9.

    CAS  Article  Google Scholar 

  55. Kotnik, J., Horvat, M., & Dizdarevič, T. (2005). Current and past mercury distribution in air over the Idrija Hg mine region, Slovenia. Atmospheric Environment, 39, 7570–7579.

    CAS  Article  Google Scholar 

  56. Ladle, R. J., Jepson, P., Araújo, M. B., & Whittaker, R. J. (2004a). Dangers of crying wolf over risk of extinctions. Nature, 428, 799.

    CAS  Article  Google Scholar 

  57. Ladle, R.J., Jepson, P., Araújo, M.B., & Whittaker, R.J. (2004b). Crying wolf on climate change and extinction. School of Geography and the Environment (Oxford University), Selected Publications and Output, Supplemental Publications, http://www.geog.ox.ac.uk/research/biodiversity/output.html#supplements. Accessed 25 Feb 2013.

  58. Lambertsson, L., & Matsnilsson, M. (2006). Organic Material: The primary control on mercury methylation and ambient methyl mercury concentrations in estuarine sediments. Environmental Science and Technology, 40, 1822–1829.

    CAS  Article  Google Scholar 

  59. Limpert, E., Stahel, W. A., & Abbot, M. (2001). Log-normal distributions across the sciences: keys and clues. BioScience, 51, 341–352.

    Article  Google Scholar 

  60. Lin, C.-J., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: A review. Atmospheric Environment, 33, 2067–2079.

    CAS  Article  Google Scholar 

  61. Lindberg, S. E., & Stratton, W. J. (1998). Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air. Environmental Science & Technology, 32, 49–57.

    CAS  Article  Google Scholar 

  62. Lindqvist, O., & Rodhe, H. (1985). Atmosphere mercury: A review. TELLUS, 37 B, 136–159.

  63. Llanos, W., Higueras, P., Oyarzun, R., Esbrí, J. M., López Berdonces, E. M., García Noguero, A., et al. (2010). The MERSADE (European Union) project: Testing procedures and environmental impact for the safe storage of liquid mercury in the Almadén district, Spain. Science of the Total Environment, 408, 4901–4905.

    CAS  Article  Google Scholar 

  64. Loppi, S. (2001). Environmental distribution of mercury and other trace elements in the geothermal area of Bagnore (Mt. Amiata, Italy). Chemosphere, 45, 991–995.

    CAS  Article  Google Scholar 

  65. Loredo, J., Ordoñez, A., Gallego, J. R., Baldo, C., & García-Iglesias, J. (1999). Geochemical characterisation of mercury mining spoil heaps in the area of Mieres (Asturias, northern Spain). Journal of Geochemical Exploration, 67, 377–390.

    CAS  Article  Google Scholar 

  66. Martínez-Coronado, A., Oyarzun, R., Esbrí, J. M., Llanos, W., & Higueras, P. (2011). Sampling high to extremely high Hg concentrations at the Cerco de Almadenejos, Almadén mining district (Spain): The old metallurgical precinct (1794 to 1861 AD) and surrounding areas. Journal of Geochemical Exploration, 109, 70–77.

    Article  Google Scholar 

  67. Mashyanov, N. R., & Reshetov, V. V. (1995). Geochemical ecological monitoring using remote sensing technique. Science of the Total Environment, 159, 169–175.

    CAS  Article  Google Scholar 

  68. Mercury Policy Project. (2008). U.S. joins EU in banning mercury exports; environmentalists applaud bi-partisan effort. Published on line: October 15th, 2008, http://mercurypolicy.org/?p=489. Accessed 25 Feb 2013.

  69. Moreno, T., Querol, X., Alastuey, A., García do Santos, S., Fernández Patier, R., Artiñano, B., et al. (2006). PM source apportionment and trace metallic aerosol affinities during atmospheric pollution episodes: a case study from Puertollano, Spain. Journal of Environmental Monitoring, 8, 1060–1068.

    CAS  Article  Google Scholar 

  70. Morteani, G., Ruggieri, G., Möller, P., & Preinfalk, Ch. (2011). Geothermal mineralized scales in the pipe system of the geothermal Piancastagnaio power plant (Mt. Amiata geothermal area): a key to understand the stibnite, cinnabarite and gold mineralization of Tuscany (central Italy). Mineralium Deposita, 46, 197–210.

    CAS  Article  Google Scholar 

  71. Myers, G. J., Davidson, P. W., Cox, C., Shamlaye, C., Cernichiari, E., & Clarkson, T. W. (2000). Twenty-seven years studying the human neurotoxicity of methylmercury exposure. Environmental Research, 83, 275–285.

    CAS  Article  Google Scholar 

  72. Ninomiya, T., Ohmori, H., Hashimoto, K., Tsuruta, K., & Ekino, S. (1995). Expansion of methylmercury poisoning outside of Minamata: an epidemiological study on chronic methylmercury poisoning outside of Minamata. Environmental Research, 70, 47–50.

    CAS  Article  Google Scholar 

  73. Nriagu, J., & Becker, C. (2003). Volcanic emissions of mercury to the atmosphere: Global and regional inventories. Science of the Total Environment, 304, 3–12.

    CAS  Article  Google Scholar 

  74. O’Rourke, D., & Connolly, S. (2003). Just oil? The distribution of environmental and social impacts of oil production and consumption. Annual Review of Environment and Resources, 28, 587–617.

    Article  Google Scholar 

  75. Oyarzun, R., Higueras, P., Esbrí, J. M., & Pizarro, J. (2007). Mercury in air and plant specimens in herbaria: A pilot study at the MAF Herbarium in Madrid (Spain). Science of the Total Environment, 387, 346–352.

    CAS  Article  Google Scholar 

  76. Oyarzun, R., Lillo, J., Sánchez Hernández, J. C., & Higueras, P. (2005). Pre-industrial metal anomalies in ice cores: A simplified reassessment of windborne soil dust contribution and volcanic activity during the last glaciation. International Geology Review, 47, 1120–1130.

    Article  Google Scholar 

  77. Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment 40,, 4048–4063.

    CAS  Article  Google Scholar 

  78. Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., et al. (2010). Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 44, 2487–2499.

    CAS  Article  Google Scholar 

  79. Palinkas, L. A., Mashyanov, N. R., Sholupov, S. E., Durn, G., Miko, S. (1990). Mercury in the atmosphere over rural, urban and industrial parts of Zagreb city. Rudarsko-geolosko-naftni zbornik, 2, 19–27.

    Google Scholar 

  80. Pirrone, N., Aas, W., Cinnirella, S., Ebinghaus, R., Hedgecock, I. M., Pacyna, J., et al. (2013). Toward the next generation of air quality monitoring: Mercury. Atmospheric Environment, 80, 599–611.

    CAS  Article  Google Scholar 

  81. Pogarev, S. E., Ryzhov, V. V., Mashyanov, N. R., & Sobolev, M. B. (1997). Mercury values in urine from inhabitants of St. Petersburg. Water, Air, and Soil Pollution, 97, 193–198.

    CAS  Google Scholar 

  82. Pyle, D. M., & Mather, T. A. (2003). The importance of volcanic emissions for the global atmospheric mercury cycle. Atmospheric Environment, 37, 5115–5124.

    CAS  Article  Google Scholar 

  83. Richey, J. E., Devol, A. H., Wofsy, S. C., Victoria, R., & Riberio, M. N. G. (1988). Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnology and Oceanography, 33, 551–561.

    CAS  Article  Google Scholar 

  84. Rossini Oliva, S., & Fernández Espinosa, A. J. (2007). Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchemical Journal, 86, 131–139.

    CAS  Article  Google Scholar 

  85. Saleem, M., Alfred, S., Bahnisch, R. A., Coates, P., & Kearney, D. J. (2013). Mercury poisoning from home gold amalgam extraction. The Medical Journal of Australia, 199, 125–127.

    Article  Google Scholar 

  86. Schuster, P. F., Krabbenhoft, D. P., Naftz, D. L., Cecil, L. D., Olson, M. L., Dewild, J. F., et al. (2002). Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environmental Science and Technology, 36, 2303–2310.

    CAS  Article  Google Scholar 

  87. Selin, N. E., et al. (2007). Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. Journal of Geophysics Research D: Atmospheres, 112. Article no. D02308.

  88. Sholupov, S. E., & Ganeyev, A. A. (1995). Zeeman absorption spectrometry using high frequency modulated light polarization. Spectrochim Acta B, 50, 1227–1238.

    Article  Google Scholar 

  89. Sholupov, S., Pogarev, S., Ryzhov, V., Mashyanov, N., & Stroganov, A. (2004). Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples. Fuel Processing Technology, 85, 473–485.

    CAS  Article  Google Scholar 

  90. Sigler, J. M., Mao, H., & Talbot, R. (2009). Gaseous elemental and reactive mercury in Southern New Hampshire. Atmospheric Chemistry and Physics, 9, 1929–1942.

    CAS  Article  Google Scholar 

  91. Sillman, S., Marsik, F., Al-Wali, K.I., Keeler, G.J., & Landis, M.S., (2005). Models for the formation and transport of reactive mercury: results for Florida, the Northeastern U.S. and the Atlantic Ocean. Fifth Air Quality Conference: Mercury, Trace Elements, SO3 and Particulate Matter, Arlington, VA., September 19–21, 2005, http://www-personal.umich.edu/~sillman/web-publications/SillmanHg-AQV05.pdf.

  92. Slemr, F., Brunke, E. G., Ebinghaus, R., & Kuss, J. (2011). Worldwide trend of atmospheric mercury since 1995. Atmospheric Chemistry and Physics, 11, 4779–4787.

    CAS  Article  Google Scholar 

  93. Slemr, F., Brunke, E.-G., Ebinghaus, R., Temme, C., Munthe, J., Wangberg, I., et al. (2003). Worldwide trend of atmospheric mercury since 1977. Geophysical Research Letters, 30, 23–31.

    Article  Google Scholar 

  94. Smith, W. R., Montopoli, G., Byerly, A., Montopoli, M., Harlow, H., & Wheeler, A. R., I. I. I. (2013). Mercury toxicity in wildland firefighters. Wilderness & Environmental Medicine, 24, 141–145.

    Article  Google Scholar 

  95. Smith, R. G., Vorwald, A. J., Patil, L. S., & Mooney, T. F., Jr. (1970). Effects of exposure to mercury in the manufacture of chlorine. The American Industrial Hygiene Association Journal, 31, 687–700.

    CAS  Article  Google Scholar 

  96. Spiegel, S. J., & Veiga, M. M. (2005). Building capacity in small-scale mining communities: Health, ecosystem sustainability, and the Global Mercury Project. EcoHealth, 2, 361–369.

    Article  Google Scholar 

  97. Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., & Dommergue, A. (2010). A review of worldwide atmospheric mercury measurements. Atmospheric Chemistry and Physics, 10, 8245–8265.

    CAS  Article  Google Scholar 

  98. Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A., & Landing, W. M. (2009). Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochem. Cy. 23. Article no. GB2010.

  99. US EPA. (2001). Environmental technology verification report: LUMEX Ltd. mercury continuous emission monitor. U.S. Environmental Protection Agency, http://www.epa.gov/etv/pubs/01_vr_lumex_cem.pdf.

  100. US EPA. (2007). Mercury Response Guidebook—Section 3. http://www.epa.gov/epaoswer/hazwaste/mercury/pdf/chapter3.pdf, May 2007.

  101. US OSHA (2007). Health and safety (Hg). Occupational Hazards, http://www.hgtech.com/HSE/HSE.htm. Acceded 25 Feb 2013.

  102. US EPA. (2012). What is a toxic substance? Learn About Chemicals Around Your House, US Environmental Protection Agency, http://www.epa.gov/kidshometour/toxic.htm. Acceded 25 Feb 2013.

  103. Varekamp, J. C., & Buseck, P. R. (1981). Mercury emissions from Mount St Helens during September 1980. Nature, 293, 555–556.

    CAS  Article  Google Scholar 

  104. Vaselli, O., Higueras, P., Nisi, B., Esbrí, J. M., Cabassi, J., Martínez-Coronado, A., et al. (2013). Distribution of Gaseous Hg in the Mercury Mining District of Mt. Amiata (Central Italy): a Geochemical Survey Prior the Reclamation Project. Environmental Research, 125, 179–187.

    CAS  Article  Google Scholar 

  105. Veiga, M. M., Bermudez, D., Pacheco-Ferreira, H., Martins Pedroso, L. R., Gunson, A. J., Berrios, G., et al. (2005). Mercury pollution from artisanal gold mining in Block B, El Callao, Bolívar State, Venezuela. In N. Pirrone & K. Mahaffey (Eds.), Dynamics of mercury pollution on regional and global scales: atmospheric processes. Human exposure around the world (pp. 421–450). Norwell, Massachusetts: Springer.

    Google Scholar 

  106. WHO. (2000). Air quality guidelines for Europe. WHO Regional Publications European Series 91, World Health Organization Regional Office for Europe, Copenhagen, 288 pp.

  107. WHO (2005). Mercury in drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality, World Health Organization, http://www.who.int/water_sanitation_health/dwq/chemicals/mercury/en/. Acceded 25 Feb 2013.

  108. Yasutake, A., Cheng, J. P., Kiyono, M., Uraguchi, S., Liu, X., Miura, K., et al. (2011). Rapid monitoring of mercury in air from an organic chemical factory in China using a portable mercury analyzer. The Scientific World Journal, 11, 1630–1640.

    CAS  Article  Google Scholar 

  109. Yuen, E., Cortez, P. S., & Goebel, P. J. (2000). Family poisoned by mercury vapor inhalation. The American Journal of Emergency Medicine, 18, 599–602.

    Article  Google Scholar 

  110. Žagar, D., Knap, A., Warwick, J. J., Rajar, R., Horvat, M., & Četina, M. (2006). Modelling of mercury transport and transformation processes in the Idrijca and Soča river system. Science of the Total Environment, 368, 143–163.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants CGL2009-13171 and CTM2012-33918 from the Spanish Ministry of Economy and Competitiveness and PII1I09-0142-4389 from the Castilla-La Mancha (Spain) Regional Government. PH and RO warmly thank all the researchers that kindly decided to contribute with their data on GEM to this paper. Our gratitude goes to all of them.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pablo Higueras.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Higueras, P., Oyarzun, R., Kotnik, J. et al. A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts. Environ Geochem Health 36, 713–734 (2014). https://doi.org/10.1007/s10653-013-9591-2

Download citation

Keywords

  • Gaseous elemental mercury
  • Atmospheric pollution
  • Mining districts
  • Cities
  • Pristine locations
  • Volcanos
  • Hazards
  • Risks