Abstract
Groundwater quality which relates closely to human health has become as important as its quantity due to the demand for safe water. In the present study, an entropy-weighted fuzzy water quality index (WQI) has been proposed for performing groundwater quality assessment in and around an industrial park, northwest China, where domestic water requirements are solely met by groundwater. The human health risk was assessed with the model recommended by the United States Environmental Protection Agency. In addition, the sources of major ions and main contaminants were also analyzed. The study shows that groundwater in the study area has been contaminated conjunctively by natural processes and industrial and agricultural activities. Nitrate, manganese (Mn), fluoride, total dissolved solids, total hardness and sulfate are major contaminants influencing groundwater quality. Nitrate and heavy metals such as Mn are mainly affected by human agricultural activities and industrial production, while other contaminants are mainly originated from mineral weathering and water–rock interactions. The results of water quality assessment suggest that half of the groundwater samples collected are of medium quality thus require pretreatment before human consumption. The mean health risk caused by the consumption of contaminated groundwater in the area is 8.42 × 10−5 per year which surpasses the maximum acceptable level (5 × 10−5 per year) recommended by the International Commission on Radiologic Protection. The entropy-weighted fuzzy WQI proposed in this study can not only assign proper weights to parameters but also treat uncertainties associated with water quality classification. This study will be of interest to international environmentalists and hydrogeologists. It will also be useful in regional groundwater management and protection.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Akter, A., & Ali, M. H. (2011). Arsenic contamination in groundwater and its proposed remedial measures. International Journal of Environment Science and Technology, 8(2), 433–443.
Alam, M., Rais, S., & Aslam, M. (2012). Hydrochemical investigation and quality assessment of ground water in rural areas of Delhi, India. Environmental Earth Sciences, 66, 97–110. doi:10.1007/s12665-011-1210-x.
APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: American Public Health Association.
Arif, M., Hussain, I., Hussain, J., Sharma, S., & Kumar, S. (2012). Fluoride in the drinking water of Nagaur Tehsil of Nagaur District, Rajasthan, India. Bulletin of Environment Contamination and Toxicology, 88, 870–875. doi:10.1007/s00128-012-0572-4.
Batayneh, A. T. (2012). Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: Health risk assessment. International Journal of Environmental Science and Technology, 9, 153–162. doi:10.1007/s13762-011-0009-3.
Bureau of Quality and Technical Supervision of China. (1994). National standard of the People’s Republic of China: Quality standard for groundwater. GB/T 14848-93 (in Chinese).
Colin, F., & Quevauviller, P. (1998). Monitoring of water quality: The contribution of advanced technologies. Amsterdam: Elsevier Science.
Dar, M. A., Sankar, K., & Dar, I. A. (2011). Fluorine contamination in groundwater: A major challenge. Environmental Monitoring and Assessment 173, 955–968. doi:10.1007/s10661-010-1437-0.
De Souza, C. F. M., Lima, J. F., Jr., Adriano, M. S. P. F., de Carvalho, F. G., Forte, F. D. S., de Farias, O. R., et al. (2012). Assessment of groundwater quality in a region of endemic fluorosis in the northeast of Brazil. Environmental Monitoring and Assessment. doi:10.1007/s10661-012-2900-x.
Deutsch, B., Kahle, P., & Voss, M. (2006). Assessing the source of nitrate pollution in water using stable N and O isotopes. Agronomy for Sustainable Development, 26(4), 263–267. doi:10.1051/agro:2006025.
Dolbier, W. R., Jr. (2005). Fluorine chemistry at the millennium. Journal of Fluorine Chemistry, 126(2), 157–163. doi:10.1016/j.jfluchem.2004.09.033.
Edwards, A. P. (1973). Isotopic tracer techniques for identification of sources of nitrate pollution. Journal of Environmental Quality, 2(3), 382–387. doi:10.2134/jeq1973.00472425000200030018x.
Fagbote, E. O., Olanipekun, E. O., & Uyi, H. S. (2013). Water quality index of the ground water of bitumen deposit impacted farm settlements using entropy weighted method. International Journal of Environmental Science and Technology,. doi:10.1007/s13762-012-0149-0.
Farid, I., Trabelsi, R., Zouari, K., Abid, K., & Ayachi, M. (2013). Hydrogeochemical processes affecting groundwater in an irrigated land in Central Tunisia. Environmental Earth Sciences, 68, 1215–1231. doi:10.1007/s12665-012-1788-7.
Ferré-Huguet, N., Bosch, C., Lourencetti, C., Nadal, M., Schuhmacher, M., Grimalt, J. O., et al. (2009). Human health risk assessment of environmental exposure to organochlorine compounds in the Catalan stretch of the Ebro River, Spain. Bulletin of Environment Contamination and Toxicology, 83, 662–667. doi:10.1007/s00128-009-9871-9.
Geng, F. M., Xue, L. Q., Lu, G. H., & Wu, Y. F. (2006). Water quality health-hazard risk assessment on drinking water supply sources. Journal of Hydraulic Engineering, 37(10), 1242–1245 (in Chinese).
Gharibi, H., Mahvi, A. H., Nabizadeh, R., Arabalibeik, H., Yunesian, M., & Sowlat, M. H. (2012). A novel approach in water quality assessment based on fuzzy logic. Journal of Environmental Management, 112, 87–95. doi:10.1016/j.jenvman.2012.07.007.
Hejabi, A. T., Basavarajappa, H. T., Karbassi, A. R., & Monavari, S. M. (2011). Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environmental Monitoring and Assessment, 182, 1–13. doi:10.1007/s10661-010-1854-0.
Hosono, T., Tokunaga, T., Kagabu, M., Nakata, H., Orishikida, T., Lin, I. T., et al. (2013). The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution. Water Research,. doi:10.1016/j.watres.2013.02.020.
Huang, L., Li, P. C., & Liu, B. W. (2008). Health risk assessment of pollution in groundwater—A case study in Changjiang Delta. Safety and Environmental Engineering, 15(2), 26–29 (in Chinese).
Icaga, Y. (2007). Fuzzy evaluation of water quality classification. Ecological Indicators, 7, 710–718. doi:10.1016/j.ecolind.2006.08.002.
Jalali, M. (2011). Nitrate pollution of groundwater in Toyserkan, western Iran. Environmental Earth Sciences, 62, 907–913. doi:10.1007/s12665-010-0576-5.
Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., et al. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicol Environ Safety, 72, 301–309. doi:10.1016/j.ecoenv.2008.02.024.
Khan, N. I., Owens, G., Bruce, D., & Naidu, R. (2009). Human arsenic exposure and risk assessment at the landscape level: A review. Environmental Geochemistry and Health, 31, 143–166. doi:10.1007/s10653-008-9240-3.
Kuhr, P., Haider, J., Kreins, P., Kunkel, R., Tetzlaff, B., Vereecken, H., et al. (2013). Model based assessment of nitrate pollution of water resources on a federal state level for the dimensioning of agro-environmental reduction strategies: The North Rhine-Westphalia (Germany) case study. Water Resources Management, 27, 885–909. doi:10.1007/s11269-012-0221-z.
Li, P. Y., & Qian, H. (2011). Human health risk assessment for chemical pollutants in drinking water source in Shizuishan City, Northwest China. Iranian Journal of Environmental Health Science & Engineering, 8(1), 41–48.
Li, P. Y., Qian, H., Howard, K. W. F., Wu, J. H., & Lyu, X. S. (2013a). Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, Northwest China. Environmental Monitoring and Assessment,. doi:10.1007/s10661-013-3461-3.
Li, P. Y., Qian, H., & Wu, J. H. (2010a). Groundwater quality assessment based on improved water quality index in Pengyang County, Ningxia, Northwest China. Journal of Chemistry, 7(S1), S209–S216. doi:10.1155/2010/451304.
Li, P. Y., Qian, H., & Wu, J. H. (2011). Application of set pair analysis method based on entropy weight in groundwater quality assessment—A case study in Dongsheng City, Northwest China. Journal of Chemistry, 8(2), 851–858. doi:10.1155/2011/879683.
Li, P. Y., Qian, H., Wu, J. H., Chen, J., Zhang, Y. Q., & Zhang, H. B. (2013b). Occurrence and hydrogeochemistry of fluoride in shallow alluvial aquifer of Weihe River, China. Environmental Earth Sciences,. doi:10.1007/s12665-013-2691-6.
Li, P. Y., Qian, H., Wu, J. H., Zhang, Y. Q., & Zhang, H. B. (2013c). Major ion chemistry of shallow groundwater in the Dongsheng Coalfield, Ordos Basin, China. Mine Water and the Environment, 32(3), 195–206. doi:10.1007/s10230-013-0234-8.
Li, P. Y., Wu, J. H., & Qian, H. (2010b). Groundwater quality assessment based on entropy weighted osculating value method. International Journal Environmental Science, 1(4), 621–630.
Li, P. Y., Wu, J. H., & Qian, H. (2012). Groundwater quality assessment based on rough sets attribute reduction and TOPSIS method in a semi-arid area, China. Environmental Monitoring and Assessment, 184(8), 4841–4854. doi:10.1007/s10661-011-2306-1.
Li, P. Y., Wu, J. H., & Qian, H. (2013d). Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environmental Earth Sciences, 69, 2211–2225. doi:10.1007/s12665-012-2049-5.
Liu, N., Ni, T. H., Xia, J., Dai, M. Z., He, C. Y., & Lu, G. F. (2011). Non-carcinogenic risks induced by metals in drinking source water of Jiangsu Province, China. Environmental Monitoring and Assessment, 177, 449–456. doi:10.1007/s10661-010-1646-6.
Mahvi, A. H., Nouri, J., Babaei, A. A., & Nabizadeh, R. (2005). Agricultural activities impact on groundwater nitrate pollution. International Journal of Environmental Science and Technology, 2(1), 41–47.
Manecki, P., & Gałuszka, A. (2012). Groundwater quality as a geoindicator of organochlorine pesticide contamination after pesticide tomb reclamation: A case study of Franciszkowo, Northwestern Poland. Environmental Earth Sciences, 67(8), 2441–2447. doi:10.1007/s12665-012-1694-z.
Ministry of Health of PRC, Standardization Administration of PRC. (2006a). Standard examination methods for drinking water (GB/T5750-2006). Beijing: Standards Press of China (in Chinese).
Ministry of Health of PRC, Standardization Administration of PRC. (2006b). Standard for drinking water quality (GB/T5749-2006). Beijing: Standards Press of China (in Chinese).
Mohebbi, M. R., Saeedi, R., Montazeri, A., Vaghefi, K. A., Labbafi, S., Oktaie, S., et al. (2013). Assessment of water quality in groundwater resources of Iran using a modified drinking water quality index (DWQI). Ecological Indicators, 30, 28–34. doi:10.1016/j.ecolind.2013.02.008.
Momot, O., & Synzynys, B. (2005). Toxic aluminium and heavy metals in groundwater of middle Russia: Health risk assessment. International Journal of Environmental Research and Public Health, 2(2), 214–218. doi:10.3390/ijerph2005020003.
Nasrabadi, T., & Bidabadi, N. S. (2013). Evaluating the spatial distribution of quantitative risk and hazard level of arsenic exposure in groundwater, case study of Qorveh County, Kurdistan Iran. Iranian Journal of Environmental Health Science & Engineering,. doi:10.1186/1735-2746-10-30.
Nestler, A., Berglund, M., Accoe, F., Duta, S., Xue, D. M., Boeckx, P., et al. (2011). Isotopes for improved management of nitrate pollution in aqueous resources: Review of surface water field studies. Environmental Science and Pollution Research, 18, 519–533. doi:10.1007/s11356-010-0422-z.
Ni, F. Q., Liu, G. D., Ren, H. Z., Yang, S. C., Ye, J., Lu, X. Y., et al. (2009). Health risk assessment on rural drinking water safety—A case study in Rain City District of Ya’an City of Sichuan Province. Journal of Water Resource and Protection, 2, 128–135. doi:10.4236/jwarp.2009.12017.
Ni, B., Wang, H. B., Li, X. D., & Liang, J. (2010). Water environmental health risk assessment in lake sources drinking water. Research of Environmental Sciences, 23(1), 74–79 (in Chinese).
Odukoya, A. M., & Abimbola, A. F. (2010). Contamination assessment of surface and groundwater within and around two dumpsites. International Journal of Environment Science and Technology, 7(2), 367–376.
Pawar, N. J., & Shaikh, I. J. (1995). Nitrate pollution of ground waters from shallow basaltic aquifers, Deccan Trap Hydrologic Province, India. Environmental Geology, 25, 197–204. doi:10.1007/BF00768549.
Rajesh, R., Brindha, K., Murugan, R., & Elango, L. (2012). Influence of hydrogeochemical processes on temporal changes in groundwater quality in a part of Nalgonda District, Andhra Pradesh, India. Environmental Earth Sciences, 65, 1203–1213. doi:10.1007/s12665-011-1368-2.
Rajmohan, N., & Elango, L. (2004). Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environmental Geology, 46, 47–61. doi:10.1007/s00254-004-1012-5.
Rao, G. T., Rao, V. V. S. G., Sarma, V. S., Dhakate, R., Surinaidu, L., Mahesh, J., et al. (2012). Hydrogeochemical parameters for assessment of groundwater quality in a river sub-basin. International Journal of Environmental Science and Technology, 9, 297–310. doi:10.1007/s13762-012-0024-z.
Ryu, H., Han, J. K., Jung, J. W., Bae, B., & Nam, K. (2007). Human health risk assessment of explosives and heavy metals at a military gunnery range. Environmental Geochemistry and Health, 29, 259–269. doi:10.1007/s10653-007-9101-5.
Schoeller, H. (1967). Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigation and development. Water Research Series-33 (pp. 44–52). UNESCO.
Singh, C. K., Rina, K., Singh, R. P., Shashtri, S., Kamal, V., & Mukherjee, S. (2011). Geochemical modeling of high fluoride concentration in groundwater of Pokhran area of Rajasthan, India. Bulletin of Environmental Contamination and Toxicology, 86, 152–158. doi:10.1007/s00128-011-0192-4.
Stamatis, G., Parpodis, K., Filintas, A., & Zagana, E. (2011). Groundwater quality, nitrate pollution and irrigation environmental management in the Neogene sediments of an agricultural region in central Thessaly (Greece). Environmental Earth Sciences, 64, 1081–1105. doi:10.1007/s12665-011-0926-y.
Steinich, B., Escolero, O., & Marín, L. E. (1998). Salt-water intrusion and nitrate contamination in the Valley of Hermosillo and El Sahuaral coastal aquifers, Sonora, Mexico. Hydrogeology Journal, 6, 518–526. doi:10.1007/s100400050172.
Subramani, T., Rajmohan, N., & Elango, L. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment, 162, 123–137. doi:10.1007/s10661-009-0781-4.
Uddin, M. M., Harun-Ar-Rashid, A. K. M., Hossain, S. M., Hafiz, M. A., Nahar, K., & Mubin, S. H. (2006). Slow arsenic poisoning of the contaminated groundwater users. International Journal of Environment Science and Technology, 3(4), 447–453.
Uhan, J., Lojen, S., Pintar, M., & Pezdič, J. (2011). Groundwater nitrate sources in alluvial aquifers: Isotope case study in Savinja Valley (Slovenia). Central European Geology, 54(1–2), 29–33. doi:10.1556/CEuGeol.54.2011.1-2.4.
USEPA. (1989). Risk assessment guidance for superfund, volume I: Human health evaluation manual (Part A). Washington, DC: Office of Emergency and Remedial Response.
Vetrimurugan, E., Elango, L., & Rajmohan, N. (2013). Sources of contaminants and groundwater quality in the coastal part of a river delta. International Journal of Environmental Science and Technology, 10, 473–486. doi:10.1007/s13762-012-0138-3.
Wang, S. (2013). Groundwater quality and its suitability for drinking and agricultural use in the Yanqi Basin of Xinjiang Province, Northwest China. Environmental Monitoring and Assessment. doi:10.1007/s10661-013-3113-7.
Wei, J. M., Mi, W. B., & He, T. H., (2008). Assessment of the safety status for the drinking water supply sources and its management strategies in Yinchuan City. Journal of Water Resources and Water Engineering, 19(3), 65–68 (in Chinese).
World Health Organization (WHO). (2011). Guidelines for drinking-water quality (4th ed.). http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf. Accessed on March 31, 2013.
Wu, J. H., Li, P. Y., & Qian, H. (2012). Study on the hydrogeochemistry and non-carcinogenic health risk induced by fluoride in Pengyang County, China. International Journal of Environmental Sciences, 2(3), 1127–1134. doi:10.6088/ijes.00202030001.
Yidana, S. M., Banoeng-Yakubo, B., & Akabzaa, T. M. (2010). Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. Journal of African Earth Sciences, 58, 220–234. doi:10.1016/j.jafrearsci.2010.03.003.
Zhang, W. L., Tian, Z. X., Zhang, N., & Li, X. Q. (1996). Nitrate pollution of groundwater in Northern China. Agriculture, Ecosystems & Environment, 59(3), 223–231. doi:10.1016/0167-8809(96)01052-3.
Zhao, H. R., Xia, B. C., Fan, C., Zhao, P., & Shen, S. L. (2012). Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Science of the Total Environment, 417–418, 45–54. doi:10.1016/j.scitotenv.2011.12.047.
Zheng, D. F., Shi, Y. G., & Cui, S. (2008). Health risk assessment of contaminants in source of drinking water. Water Resources and Power, 26(6), 48–51 (in Chinese).
Acknowledgments
The research was supported by the Doctor Postgraduate Technical Project of Chang’an University (2013G5290002 and CHD2011ZY022), the Special Fund for Ningxia Environmental Protection (2011HB001), the Technical Program of Environmental Protection of Ningxia Environmental Protection Department (201108011), the Special Fund for Basic Scientific Research of Central Colleges (CHD2011ZY020 and CHD2012TD003) and the National Natural Science Foundation of China (41172212). Anonymous reviewers are sincerely acknowledged for their useful comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, P., Wu, J., Qian, H. et al. Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environ Geochem Health 36, 693–712 (2014). https://doi.org/10.1007/s10653-013-9590-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10653-013-9590-3


