Advertisement

Environmental Geochemistry and Health

, Volume 36, Issue 3, pp 543–561 | Cite as

The potential impact of geological environment on health status of residents of the Slovak Republic

  • S. RapantEmail author
  • V. Cvečková
  • Z. Dietzová
  • K. Fajčíková
  • E. Hiller
  • R. B. Finkelman
  • S. Škultétyová
Original Paper

Abstract

In order to assess the potential impact of the geological environment on the health of the population of the Slovak Republic, the geological environment was divided into eight major units: Paleozoic, Crystalline, Carbonatic Mesozoic and basal Paleogene, Carbonatic-silicate Mesozoic and Paleogene, Paleogene Flysch, Neovolcanics, Neogene and Quaternary sediments. Based on these geological units, the databases of environmental indicators (chemical elements/parameters in groundwater and soils) and health indicators (concerning health status and demographic development of the population) were compiled. The geological environment of the Neogene volcanics (andesites and basalts) has been clearly documented as having the least favourable impact on the health of Slovak population, while Paleogene Flysch geological environment (sandstones, shales, claystones) has the most favourable impact. The most significant differences between these two geological environments were observed, especially for the following health indicators: SMRI6364 (cerebral infarction and strokes) more than 70 %, SMRK (digestive system) 55 %, REI (circulatory system) and REE (endocrine and metabolic system) almost 40 % and REC (malignant neoplasms) more than 30 %. These results can likely be associated with deficit contents of Ca and Mg in groundwater from the Neogene volcanics that are only about half the level of Ca and Mg in groundwater of the Paleogene sediments.

Keywords

Geochemical background Environmental indicators Health status Health indicators Slovak Republic 

Notes

Acknowledgments

This research has been performed within the project LIFE10 ENV/SK/000086 “The impact of geological environment on health status of residents of the Slovak Republic” that is financially supported by the EU’s funding instrument for the environment—Life + programme.

References

  1. Ahn, J., Albanes, D., Peters, U., Schatzkin, A., Lim, U., Freedman, M., et al. (2007). Dairy products, calcium intake, and risk of prostate cancer in the prostate, lung, colorectal, and avarian cancer screening trial. Cancer Epidemiology Biomarkers and Prevention, 16(12), 2623–2630.CrossRefGoogle Scholar
  2. Beaglehole, R., Bonita, R., & Kjellstrom, T. (1993). Basic epidemiology. Geneva: WHO.Google Scholar
  3. Bencko, V., Novák, J., & Suk, M. (2011). Health and natural conditions. (Medicine and geology). Praha. DOLIN, s.r.o. 389. (in Czech).Google Scholar
  4. Brevik, L. C., & Burgess, E. C. (Eds.) (2013). Soil and Human Health (408 pp). CRC Press, Taylor and Francis Group.Google Scholar
  5. Butler, L. M., Wong, A. S., Koh, W. P., Wang, R., Yuan, J. M., & Yu, M. C. (2010). Calcium intake increases risk of prostate cancer among Singapore Chinese. Cancer Research, 70, 4941–4948.CrossRefGoogle Scholar
  6. Chiu, H. F., Chang, C. C., & Yang, C. Y. (2004). Magnesium and calcium in drinking water and risk of death from ovarian cancer. Magnesium Research, 17(1), 28–34.Google Scholar
  7. Čurlík, J., & Šefčík, P. (1999). Geochemical atlas of slovakia-part V. Soils: Monography, Ministry of the Environment of the Slovak Republic, Geological Survey of Slovak Republic, Bratislava. 98 p.Google Scholar
  8. Darnley, A.G., Bjorklund, A. et al. (1995). A global geochemical database for environmental and resource management. Earth Sciences. 19, UNESCO, Paris.Google Scholar
  9. Dawson, E. B., Frey, M. J., Moore, T. D., & McGanity, J. (1978). Relationship of metal metabolism to vascular disease mortality rates in Texas. American Journal of Clinical Nutrition, 31, 1188–1197.Google Scholar
  10. Dissanayake, C. B., & Chandrajith, R. (Eds.) (2009). Introduction to Medical Geology (297 pp). Erlangen Earth Conference Series, Springer.Google Scholar
  11. Duker, A. A., Carranza, E. J. M., & Hale, M. (2005). Arsenic geochemistry and health. Environment International, 31, 631–641.CrossRefGoogle Scholar
  12. El-Bayoumy, K. (2001). The protective role of selenium on genetic damage and on cancer. Mutation Research, 475, 123–139. (Open Access).CrossRefGoogle Scholar
  13. Jenicek, M. (1995). Epidemiology, the logic of modern medicine. Epimed Montreal. ISBN 0-9698912-0-2.Google Scholar
  14. Klinda, J., & Lieskovská, Z. (2010). State of the environment report of the Slovak Republic (p. 192). Bratislava: Ministry of Environment of the Slovak Republic.Google Scholar
  15. Kohút, M., Kovach, V. P., Kotov, A. B., Salnikova, E. B., & Savatenkov, V. M. (1999). Sr and Nd isotope geochemistry of Hercynian granitic rocks from the Western Carpathians—Implications for granite genesis and crustal evolution. Geologica Carpathica, 50(6), 477–487.Google Scholar
  16. Larsson, S. C., Bergkvist, L., Rutergård, Giovannucci, E., & Wolk, A. (2006). Calcium and dairy food intakes are inversely associated with colorectal cancer risk in the Cohort of Swedish Men 1’2’3. The American Journal of Clinical Nutrition, 83(3), 667–673.Google Scholar
  17. Last, J.M. (2001). A dictionary of epidemiology. Oxford University Press, ISBN 0-19-514169-5.Google Scholar
  18. Lin, J., Manson, J. E., Lee, I. M., Cook, N. R., Buring, J. E., & Zhang, S. M. (2007). Intakes of calcium and vitamin D and breast cancer risk in women. Archives of International Medicine, 167(10), 1050–1059.CrossRefGoogle Scholar
  19. Rapant, S., Cvečková, V., Dietzová, Z., Letkovičová, M., & Khun, M. (2009). Medical geochemistry research in SGR Mts. Environmental Geochemistry and Health, 31(1), 11–25.CrossRefGoogle Scholar
  20. Rapant, S., Dietzová, Z., & Cicmanová, S. (2006). Environmental and health risk assessment in abandoned mining area, Zlatá Idka, Slovakia. Environmental Geology, 51, 387–397.CrossRefGoogle Scholar
  21. Rapant, S., Letkovičová, M., Cvečková, V., Ďurža, A., Fajčíková, K., & Zach, H. (2013). Linking of environmental and health indicators by neural networks: Case of breast cancer mortality, Slovak Republic. Open Journal of Geology, 3(2), 101–112.CrossRefGoogle Scholar
  22. Rapant, S., Letkovičová, M., Cvečková, V., Fajčíková, K., Galbavý, J., & Letkovič, M. (2010). Environmental and health indicators of the Slovak Republic. Monograph, State Geological Institute of Dionyz Stur, Bratislava, 279. (in Slovak). www.geology.sk/?pg=geois.ms_ezi_en.
  23. Rapant, S., Rapošová, M., Bodiš, D., Marsina, K., & Slaninka, I. (1999). Environmental-geochemical mapping program in the Slovak Republic. Journal of Geochemical Exploration, 66(2), 151–158.CrossRefGoogle Scholar
  24. Rapant, S., Vrana, K., & Bodiš, D. (1996). Geochemical Atlas of Slovakia-part I. Groundwater. Bratislava: Monography, Ministry of the Environment of the Slovak Republic, Geological Survey of Slovak Republic. 127 p.Google Scholar
  25. Rapant, S., Vrana, K., & Čurlík, J. (2004). Environmental risk from the contamination of geological compartments of the environment of the Slovak Republic. Bratislava: State Geological Institute of Dionyz Stur. 80.Google Scholar
  26. Rodriguez, C., McCullough, M. L., Modul, A. M., Jacobs, E. J., Fakhrabadi-Shokoohi, D., Giovannucci, E. L., et al. (2003). Calcium, dairy products, and risk of prostate cancer in a prospective cohort of United States men. Cancer Epidemiology Biomarkers and Prevention, 12(7), 597–603.Google Scholar
  27. Rylander, R., Bonevik, H., & Rubenowitz, E. (1991). Magnesium and calcium in drinking water and cardiovascular mortality. Scandinavian Journal of Work, Environment & Health, 17, 91–94.CrossRefGoogle Scholar
  28. Selinus, O., Alloway, B. J., Centeno, J. A., Finkelman, R. B., Fuge, R., Lindh, U., et al. (2005). Essentials of medical geology, impacts of the natural environment on public health. Amsterdam: Elsevier Academic. 793.Google Scholar
  29. Selinus, O., Alloway, B., Centeno, J. A., Finkelman, R. B., Fuge, R., Lindh, U., et al. (Eds.). (2013). Essentials of medical geology (Revised Edition ed., p. 805). Berlin: Springer.Google Scholar
  30. Selinus, O., Finkelman, RB., Centeno, JA. (Eds.) (2010). Medical geology: A regional synthesis (391). Dordrecht : Springer.Google Scholar
  31. Shaper, A. G., Packham, R. F., & Pocock, S. J. (1980). The British regional heart study: Cardiovascular mortality and water quality. Journal of Environmental Pathology and Toxicology, 3, 89–111.Google Scholar
  32. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.CrossRefGoogle Scholar
  33. Takahashi, K., Akiniwa, K., & Narita, K. (2001). Regression analysis of cancer incidence rates and water fluoride in the U.S.A. based on IACR/IARC (WHO) data (1978–1992). Journal of Epidemiology, 11(4), 170–179.CrossRefGoogle Scholar
  34. Vinceti, M., Bonvicini, F., Rothman, K. J., Vescovi, L., & Wang, F. (2010). The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: A population-based case-control study. Environmental Health, 9, 77.CrossRefGoogle Scholar
  35. Vrana, K., Rapant, S., Bodiš, D., Marsina, K., Lexa, J., Pramuka, S., et al. (1997). Geochemical Atlas of Slovak Republic at a scale 1: 1 000 000. Journal of Geochemical Exploration, 60, 7–37.CrossRefGoogle Scholar
  36. WHO. (2002). Fluorides. In R. Liteplo, R. Gomes, P. Howe & H. Malcolm (Eds.), Environmental health criteria (p 227). Geneva, Switzerland: World Health Organization.Google Scholar
  37. WHO. (2004). Iodine status worldwide WHO Global database on Iodine Deficiency. Geneva: World Health Organization.Google Scholar
  38. Yang, Ch Y. (1999). Pancreatic cancer mortality and total hardness levels in Taiwan’s drinking water. Journal of Toxicology & Environmental Health Part A: Current Issues, 56(5), 361–369.CrossRefGoogle Scholar
  39. Yang, Ch Y, Chiu, H. F., Cheng, B. H., Hsu, T. Y., Cheng, M. F., & Wu, T. N. (2000a). Calcium and magnesium in drinking water and risk of death from breast cancer. Journal of Toxicology & Environmental Health Part A: Current Issues, 60(4), 231–241.CrossRefGoogle Scholar
  40. Yang, Ch Y, Chiu, H. F., Cheng, B. H., Hsu, T. Y., Cheng, M. F., & Wu, T. N. (2000b). Calcium and magnesium in drinking water and the risk of death from breast cancer. Journal of Toxicology and Environmental Health, Part A:Current Issues, 60(4), 231–241.CrossRefGoogle Scholar
  41. Yang, C. Y., Chiu, H. F., Cheng, M. F., Tsai, S. S., Hung, C. F., & Lin, M. C. (1999). Esophageal cancer mortality and total hardness levels in Taiwans’s drinking water. Environmental Research, 81(4), 302–308.CrossRefGoogle Scholar
  42. Yang, Ch Y, Chiu, H. F., Tsai, S. S., Cheng, M. F., Lin, Ch M, & Sung, F. C. (2000c). Calcium and magnesium in drinking water and risk of death from prostate cancer. Journal of Toxicology & Environmental Health Part A: Current Issues, 60(1), 17–26.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. Rapant
    • 1
    • 2
    Email author
  • V. Cvečková
    • 1
  • Z. Dietzová
    • 4
  • K. Fajčíková
    • 1
  • E. Hiller
    • 5
  • R. B. Finkelman
    • 3
  • S. Škultétyová
    • 5
  1. 1.State Geological Institute of D. ŠtúrBratislavaSlovak Republic
  2. 2.Goethe Uni BratislavaBratislavaSlovak Republic
  3. 3.Department of GeosciencesThe University of TexasDallasUSA
  4. 4.Regional Office of Public HealthKosiceSlovak Republic
  5. 5.Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovak Republic

Personalised recommendations