Skip to main content

Advertisement

Log in

Forage and rangeland plants from uranium mine soils: long-term hazard to herbivores and livestock?

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Metalliferous uranium mine overburden soils integrated into arable land or stabilized by perennial rangeland plants evoke concern about the quality of crops and the exposure of grazing and thereby soil-ingesting (wildlife) herbivores to heavy metals (HM) and radionuclides. In a 2-year trial, thirteen annual and perennial forage and rangeland plants were thus potted on, or taken from, cultivated field soil of a metalliferous hot spot near Ronneburg (Germany). The content of soil and shoot tissues in 20 minerals was determined by ICP-MS to estimate HM (and uranium) toxicities to grazing animals and the plants themselves, and to calculate the long-term persistence of the metal toxicants (soil clean-up times) from the annual uptake rates of the plants. On Ronneburg soil elevated in As, Cd, Cu, Mn, Pb, U, and Zn, the shoot mineral content of all test plants remained preferentially in the range of “normal plant concentrations” but reached up to the fourfold to sixfold in Mn, Ni, and Zn, the 1.45- to 21.5-fold of the forage legislative limit in Cd, and the 10- to 180-fold of common herb concentrations in U. Shoot and the calculated root concentrations in Cd, Cu, Ni, and Zn accounted for phytotoxic effects at least to grasses and cereals. Based on WHO PTWI values for the tolerable weekly human Cd and Pb intake, the expanded Cd and Pb limits for forage, and reported rates of hay, roots, and adhering-soil ingestion, the tolerable daily intake rates of 0.65/11.6 mg in Cd/Pb by a 65 kg herbivore would be surpassed by the 11- to 27/0.7- to 4.7-fold across the year, with drastic consequences for winter-grazing and thereby high rates of roots and soil-ingesting animals. The daily intake of 5.3–31.5 mg of the alpha radiation emitter, U, may be less disastrous to short-lived herbivores. The annual phytoextraction rates of critical HM by the tested excluder crops indicate that hundreds to thousands of years are necessary to halve the HM and (long-lived) radionuclide load of Ronneburg soil, provided the herbage is harvested at all. It is concluded that the content in Cd/As, Cd, and Cu exclude herbage/Ronneburg soil from the commercial use as forage or pasture land soil for incalculable time spans. Caution is required, too, with the consumption of game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angle, J. S., & Linacre, N. A. (2005). Metal phytoextraction—a survey of potential risks. International Journal of Phytoremediation, 7, 241–254.

    Article  CAS  Google Scholar 

  • Auermann, E., Dässler, H.-G., Jacobi, J., Cumbrowski, J., & Meckel, U. (1980). Untersuchungen zum Schwermetallgehalt von Getreide und Kartoffeln. Die Nahrung, 24, 925–937.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.

    Article  CAS  Google Scholar 

  • Barman, S. C., Sahu, R. K., Bhargava, S. K., & Chaterjee, C. (2000). Distribution of heavy metals in wheat, mustard, and weed grown in field irrigated with industrial effluents. Bulletin of Environmental Contamination and Toxicology, 64, 489–496.

    Article  CAS  Google Scholar 

  • Baumann, N., & Arnold, T. (2011). Uranium(VI) speciation in natural occurring water samples at pH 3–4, determined by TRLFS. In: Sustainable waste management at postmining landscapes (p. 41). 10th Symposium on Remediation, 3–6 October, 2011, Jena/Dornburg. FSU Jena, Germany.

  • Bergbauverein Ronneburg e_V_.htm. Accessed 22 May 2013.

  • Bergmann, H., Voigt, K.-D., Machelett, B., & Gramss, G. (2006). Variation in heavy metal uptake by crop plants. In B. J. Merkel & A. Hasche-Berger (Eds.), Uranium in the environment (pp. 459–468). Berlin: Springer.

    Chapter  Google Scholar 

  • Bermudez, G. M. A., Moreno, M., Invernizzi, R., Plá, R., & Pignata, M. L. (2010). Heavy metal pollution in topsoils near a cement plant: The role of organic matter and distance to the source to predict total and HCl-extracted heavy metal concentrations. Chemosphere, 78, 375–381.

    Article  CAS  Google Scholar 

  • BGBl 39. (1996). Bundesgesetzblatt (Germany): Richtwerte für Schadstoffe in Lebensmitteln (pp. 193–194). Federal Republic of Germany: Bundesministerium der Justiz.

  • Bonanomi, G., Sicurezza, M. G., Caporaso, S., Esposito, A., & Mazzoleni, S. (2006). Phytotoxicity dynamics of decaying plant materials. New Phytologist, 169, 571–578.

    Article  CAS  Google Scholar 

  • Bosch, J., Lee, K.-Y., Jordan, G., Kim, K.-W., & Meckenstock, R. U. (2012). Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. Environmental Science and Technology, 46, 2095–2101.

    Article  CAS  Google Scholar 

  • Bose, S., & Bhattacharyya, A. K. (2008). Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere, 70, 1264–1272.

    Article  CAS  Google Scholar 

  • Bowen, H. J. M. (1979). Environmental chemistry of the elements. London: Academic Press.

    Google Scholar 

  • Brej, T. (1998). Heavy metal tolerance in Agropyron repens (L.) P. Bauv. populations from the Legnica copper smelter area, lower Silesia. Acta Societatis Botanicorum Poloniae, 67, 325–333.

    Article  CAS  Google Scholar 

  • Chang, P., Kim, J.-Y., & Kim, K.-W. (2005). Concentrations of arsenic and heavy metals in vegetation at two abandoned mine tailings in South Korea. Environmental Geochemistry and Health, 27, 109–119.

    Article  CAS  Google Scholar 

  • Cheng, K. L., Hogan, A. C., Parry, D. L., Markich, S. J., Harford, A. J., & Van Dama, R. A. (2010). Uranium toxicity and speciation during chronic exposure to the tropical freshwater fish, Mogurnda mogurnda. Chemosphere, 79, 547–554.

    Article  CAS  Google Scholar 

  • Cook, L. L., Inouye, R. S., & McGonigle, T. P. (2009). Evaluation of four grasses for use in phytoremediation of Cs-contaminated arid land soil. Plant and Soil, 324, 169–184.

    Article  CAS  Google Scholar 

  • Craft, E. S., Abu-Qare, A. W., Flaherty, M. M., Garofolo, M. C., Rincavage, H. L., & Abou-Donia, M. B. (2004). Depleted and natural uranium: Chemistry and toxicological effects. Journal of Toxicology and Environmental Health, Part B, 7, 297–317.

    Article  CAS  Google Scholar 

  • Diamond, G. L., Morrow, P. E., Panner, B. J., Gelein, R. M., & Baggs, R. B. (1989). Reversible uranyl fluoride nephrotoxicity in the Long Evans rat. Fundamental and Applied Toxicology, 13, 65–78.

    Article  CAS  Google Scholar 

  • Duquène, L., Vandenhove, H., Tack, F., Meers, E., Baeten, J., & Wannijn, J. (2009). Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Science of the Total Environment, 407, 1496–1505.

    Article  CAS  Google Scholar 

  • Dushenkov, S. (2003). Trends in phytoremediation of radionuclides. Plant and Soil, 249, 167–175.

    Article  CAS  Google Scholar 

  • Elgersma, A., & Schlepers, H. (1997). Performance of white clover-perennial ryegrass mixtures under cutting. Grass & Forage Science, 52, 134–146.

    Article  Google Scholar 

  • Fecher, P., Habernegg, R., Lepper, H., & Steger, U. (2010). Schwermetalle in Lebensmitteln-Internetangebot Bayerisches Staatsministerium der Justiz und für Verbraucherschutz. Accessed 26 June 2013.

  • Francis, A. J., Dodge, C. J., McDonald, J. A., & Halada, G. P. (2005). Decontamination of uranium-contaminated steel surfaces by hydroxycarboxylic acid with uranium recovery. Environmental Science and Technology, 39, 5015–5021.

    Article  CAS  Google Scholar 

  • Gavrilescu, M., Pavel, L. V., & Cretescu, I. (2009). Characterization and remediation of soils contaminated with uranium. Journal of Hazardous Materials, 163, 475–510.

    Article  CAS  Google Scholar 

  • Gramss, G., Schubert, R., & Bergmann, H. (2011a). Carbon and nitrogen compounds applied to uranium mine dump soil determine (heavy) metal uptake by Chinese cabbage. Environmental Research Journal (Nova), 5, 793–818.

    Google Scholar 

  • Gramss, G., Voigt, K.-D., & Merten, D. (2011b). Phytoextraction of heavy metals by dominating perennial herbs. In B. Merkel & M. Schipek (Eds.), The new uranium mining boom (pp. 421–431). Berlin: Springer.

    Chapter  Google Scholar 

  • Gramss, G., & Voigt, K.-D. (2013). Regulation of heavy metal concentrations in cereal grains from uranium mine soils. Plant and Soil, 364, 105–118.

    Article  CAS  Google Scholar 

  • Gramss, G., Voigt, K.-D., & Bergmann, H. (2002). Mobilization of hazardous metals by plants growing in soils from uranium mining. In B. J. Merkel, B. Planer-Friedrich, & C. Wolkendorfer (Eds.), Uranium in the aquatic environment (pp. 521–528). Berlin: Springer.

    Chapter  Google Scholar 

  • Gray, C. W., Dunham, S. J., Dennis, P. G., Zhao, F. J., & McGrath, S. P. (2006). Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environmental Pollution, 142, 530–539.

    Article  CAS  Google Scholar 

  • Günther, A., Bernhard, G., Geipel, G., Reich, T., Roßberg, A., & Nitsche, H. (2003). Uranium speciation in plants. Radiochimica Acta, 91, 319–328.

    Article  Google Scholar 

  • Herlin, A. H., & Andersson, I. (1996). Soil ingestion in farm animals. A review. Rapport 105. Swedish Univ. of Agric. Sci., Lund, Sweden. ISSN 1104–7313.

  • Huang, M., Zhou, S., Sun, B., & Zhao, Q. (2008). Heavy metals in wheat grain: Assessment of potential health risk for inhabitants in Kunshan, China. Science of the Total Environment, 405, 54–61.

    Article  CAS  Google Scholar 

  • Il’in, V. B. (2007). Heavy metals in the soil-crop system. Eurasian Soil Science, 40, 993–999.

    Article  Google Scholar 

  • King, R. F., Royle, A., Putwain, P. D., & Dickinson, N. M. (2006). Changing contaminant mobility in a dredged canal sediment during a three-year phytoremediation trial. Environmental Pollution, 143, 318–326.

    Article  CAS  Google Scholar 

  • Kirchmann, H., Mattsson, L., & Eriksson, J. (2009). Trace element concentration in wheat grain: Results from the Swedish long-term soil fertility experiments and national monitoring program. Environmental Geochemistry and Health, 31, 561–571.

    Article  CAS  Google Scholar 

  • Kirnich, P. (2013). Wismut-Halden verschwinden nach und nach im Tagebau. Berliner Zeitung, May 6, 2013. Accessed 26 June 2013.

  • Klang-Westin, E., & Eriksson, J. (2003). Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant and Soil, 249, 127–137.

    Article  CAS  Google Scholar 

  • Kloke, A. (1979). Contents of arsenic, cadmium, chromium, fluorine, lead, mercury and nickel in plants grown on contaminated soil. Paper presented at United Nations-ECE Symposium on Effects of air-borne pollution on vegetation, Warsaw.

  • Knöbel, Y., Glei, M., Weise, A., Osswald, K., Schäferhenrich, A., Richter, K. K., et al. (2006). Uranyl nitrilotriacetate, a stabilized salt of uranium, is genotoxic in nontransformed human colon cells and in the human colon adenoma cell line LT97. Toxicological Sciences, 93, 286–297.

    Article  CAS  Google Scholar 

  • Laird, B. D., Peak, D., & Siciliano, S. D. (2011). Bioaccessibility of metal cations in soil is linearly related to its water exchange rate constant. Environmental Science and Technology, 45, 4139–4144.

    Article  CAS  Google Scholar 

  • Limson Zamora, M., Tracy, B. L., Zielinski, J. M., Meyerhof, D. P., & Moss, M. A. (1998). Chronic ingestion of uranium in drinking water: A study of kidney bioeffects in humans. Toxicological Sciences, 43, 68–77.

    Article  Google Scholar 

  • Limson Zamora, M., Zielinski, J. M., Meyerhof, D., Moodie, G., Falcomer, R., & Tracy, B. (2003). Uranium gastrointestinal absorption: The f 1 factor in humans. Radiation Protection Dosimetry, 105, 55–60.

    Article  CAS  Google Scholar 

  • Liu, W.-X., Liu, J.-W., Wu, M.-Z., Li, Y., Zhao, Y., & Li, S.-R. (2009). Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bulletin of Environmental Contamination and Toxicology, 82, 343–347.

    Article  CAS  Google Scholar 

  • Liu, W., Shu, W., & Lan, C. (2004). Viola baoshanensis, a plant that hyperaccumulates cadmium. Chinese Science Bulletin, 49, 29–32.

    Article  CAS  Google Scholar 

  • Lourenço, J., Pereira, R., Gonçalves, F., & Mendo, S. (2013). SSH gene expression profile of Eisenia andrei exposed in situ to a naturally contaminated soil from an abandoned uranium mine. Ecotoxicology and Environmental Safety, 88, 16–25.

    Article  CAS  Google Scholar 

  • Madejón, P., Domínguez, M. T., & Murillo, J. M. (2012). Pasture composition in a trace element-contaminated area: The particular case of Fe and Cd for grazing horses. Environmental Monitoring and Assessment, 184, 2031–2043.

    Article  CAS  Google Scholar 

  • Madejón, P., Murillo, J. M., Marañón, T., Cabrera, F., & Lopez, R. (2002). Bioaccumulation of As, Cd, Cu, Fe, and Pb in wild grasses affected by the Aznalcollar mine spill (SW Spain). Science of the Total Environment, 290, 105–120.

    Article  Google Scholar 

  • Marchiol, L., Fellet, G., Perosa, D., & Zerbi, G. (2007). Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: A field experience. Plant Physiology and Biochemistry, 45, 379–387.

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic Press.

    Google Scholar 

  • Máthé-Gáspár, G., & Anton, A. (2005). Phytoremediation study: Factors influencing heavy metal uptake of plants. Acta Biologica Szegediensis, 49, 69–70.

    Google Scholar 

  • MBT-0030000-2010: Statistischer Monatsbericht 03/2010. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz.

  • McDowell, L. R. (2003). Minerals in animal and human nutrition (2nd ed.). Amsterdam: Elsevier Science.

    Google Scholar 

  • McIntyre, T., & Whiting, M. J. (2012). Increased metal concentrations in Giant Sungazer Lizards (Smaug giganteus) from mining areas in South Africa. Archives of Environmental Contamination and Toxicology, 63, 574–585.

    Article  CAS  Google Scholar 

  • McMurter, H. J. G. (1993). A review of soil ingestion by terrestrial animals. Environment Canada, in press.

  • Meers, E., Lamsal, S., Vervaeke, P., Hopgood, M., Lust, N., & Tack, F. M. G. (2005). Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environmental Pollution, 137, 354–364.

    Article  CAS  Google Scholar 

  • Merkel, B., & Schipek, M. (2011). The new uranium mining boom. Challenge and lessons learned. Berlin: Springer.

    Google Scholar 

  • Mishra, M., Sahu, R. K., Sahu, S. K., & Padhy, R. N. (2009). Growth, yield and elements content of wheat (Triticum aestivum) grown in composted municipal solid wastes amended soil. Environment, Development and Sustainability, 11, 115–126.

    Article  Google Scholar 

  • Perronnet, K., Schwartz, C., & Morel, J. L. (2003). Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil. Plant and Soil, 249, 19–25.

    Article  CAS  Google Scholar 

  • Prat, O., Vercouter, T., Ansoborlo, E., Fichet, P., Perret, P., Kurttio, P., et al. (2009). Uranium speciation in drinking water from drilled wells in Southern Finland and its potential links to health effects. Environmental Science and Technology, 43, 3941–3946.

    Article  CAS  Google Scholar 

  • Rimstidt, J. D., & Vaughan, D. J. (2003). Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism. Geochimica et Cosmochimica Acta, 67, 873–880.

    Article  CAS  Google Scholar 

  • Sauerbeck, D. (1983). Landwirtschaftliche Forschung Special Issue, 39, 108–129.

    Google Scholar 

  • Schachtschabel, P., Blume, H. P., Brümmer, G., Hartge, K. H., & Schwertmann, U. (1998). Lehrbuch der Bodenkunde (14th ed.). Stuttgart: Enke.

    Google Scholar 

  • Schafhaltung.htm. Accessed 12 March 2013.

  • Severin, K. (2007). merkblatt_anbauempfehlungen_sm-belastete_boeden_20070615[1].pdf. Landwirtschafts-kammer Niedersachsen (Google).

  • Sheppard, S. C. (1995). Parameter values to model the soil ingestion pathway. Environmental Monitoring and Assessment, 34, 27–44.

    Article  CAS  Google Scholar 

  • Smith, K. M., Abrahams, P. W., Dagleish, M. P., & Steigmajer, J. (2009). The intake of lead and associated metals by sheep grazing mining-contaminated floodplain pastures in mid-Wales, UK: I. Soil ingestion, soil–metal partitioning and potential availability to pasture herbage and livestock. Science of the Total Environment, 407, 3731–3739.

    Article  CAS  Google Scholar 

  • Soriano, M. A., & Fereres, E. (2003). Use of crops for in situ phytoremediation of polluted soils following a toxic flood from a mine spill. Plant and Soil, 256, 253–264.

    Article  Google Scholar 

  • Squibb, K. (2002). Toxicity of metals. Applied Toxicology—NURS, 678. Accessed 21 July 2011.

  • Stalder, E., Blanc, A., Haldimann, M., & Dudler, V. (2012). Occurrence of uranium in Swiss drinking water. Chemosphere, 86, 672–679.

    Article  CAS  Google Scholar 

  • Stephenson, J. D., Mills, A., Eksteen, J. J., Milewski, A. V., & Myburgh, J. G. (2011). Geochemistry of mineral licks at Loskop Dam Nature Reserve, Mpumalanga, South Africa. Environmental Geochemistry and Health, 33, 49–53.

    Article  CAS  Google Scholar 

  • Stuczynski, T., Siebielec, G., Daniels, W. L., McCarty, G., & Chaney, R. L. (2007). Biological aspects of metal waste reclamation with biosolids. Journal of Environmental Quality, 36, 1154–1162.

    Article  CAS  Google Scholar 

  • Thiébault, C., Carrière, M., Milgram, S., Simon, A., Avoscan, L., & Gouget, B. (2007). Uranium induces apoptosis and is genotoxic to normal rat kidney (NRK-52E) proximal cells. Toxicological Sciences, 98, 479–487.

    Article  CAS  Google Scholar 

  • Tool Box—Listing of Half Lives (Half Life) for Radioactive Elements—Integrated Environmental Management, Inc. http://www.iem-inc.com/toolhalf.html. Accessed 8 Jan 2011.

  • Vangronsveld, J., Sterckx, J., Van Assche, F., & Clijsters, H. (1995). Rehabilitation studies on an old non-ferrous waste dumping ground: Effects of revegetation and metal immobilization by beringite. Journal of Geochemical Exploration, 52, 221–229.

    Article  CAS  Google Scholar 

  • Wang, S. L., Liao, W. B., Yu, F. Q., Liao, B., & Shu, W. S. (2009). Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China. Environmental Geology, 58, 471–476.

    Article  CAS  Google Scholar 

  • White, P. J., & Veneklaas, E. J. (2012). Nature and nurture: The importance of seed phosphorus content. Plant and Soil, 357, 1–8.

    Article  CAS  Google Scholar 

  • WHO, World Health Organization. (2005). Uranium in drinking water. Background document for development of WHO guidelines for drinking water quality. WHO/SDE/03.04/118. http://www.who.int/water_sanitation_health/dwq/chemicals/uranium/en. Accessed 10 Dec 2009.

  • Wurst, S., & Van Beersum, S. (2009). The impact of soil organism composition and activated carbon on grass-legume competition. Plant and Soil, 314, 1–9.

    Article  CAS  Google Scholar 

  • Yang, X.-E., Chen, W.-R., & Feng, Y. (2007). Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. Environmental Geochemistry and Health, 29, 413–428.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors are not obliged to third parties and follow no commercial purposes with the present publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Gramss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gramss, G., Voigt, KD. Forage and rangeland plants from uranium mine soils: long-term hazard to herbivores and livestock?. Environ Geochem Health 36, 441–452 (2014). https://doi.org/10.1007/s10653-013-9572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-013-9572-5

Keywords

Navigation