Environmental Geochemistry and Health

, Volume 35, Issue 6, pp 745–755 | Cite as

Arsenic concentration in rice, fish, meat and vegetables in Cambodia: a preliminary risk assessment

  • Hong-Sheng Wang
  • Suthipong Sthiannopkao
  • Zhuo-Jia Chen
  • Yu-Bon Man
  • Jun Du
  • Guang-Hua Xing
  • Kyoung-Woong Kim
  • Mohamed Salleh Mohamed Yasin
  • Jamal Hisham Hashim
  • Ming-Hung Wong
Original Paper


To assess arsenic contaminations and its possible adverse health effects, food samples were collected from Kandal, Kratie and Kampong Cham in Cambodia. The highest and the lowest concentrations were observed in fish (mean 2,832 ng g−1, ww) collected from Kandal province and cattle stomach (1.86 ± 1.10 ng g−1, ww) collected from Kratie, respectively. The daily intake of arsenic via food consumption was 604, 9.70 and 136 μg day−1 in Kandal, Kratie and Kampong Cham, respectively. The arsenic dietary intake in Kandal ranked No. 1 among all the 17 compared countries or regions. Fish consumption contributed the greatest proportion of total arsenic daily intake in Kandal (about 63.0 %) and Kampong Cham (about 69.8 %). It is revealed to be a much more important exposure pathway than drinking water for residents in Kampong Cham. The results of risk assessment suggested that the residents in Cambodia, particularly for people in Kandal province, suffer high public health risks due to consuming arsenic-contaminated food.


Arsenic (As) Food consumption Cambodia Dietary intake Risk assessment 


  1. Abedin, M. J., Feldmann, J., & Meharg, A. A. (2002). Uptake kinetics of arsenic species in rice plants. Plant Physiology, 128(3), 1120–1128.CrossRefGoogle Scholar
  2. Adams, M. A., Bolger, P. M., & Gunderson, E. L. (1994). Dietary intake and hazards of arsenic. In W. R. Chappell, C. O. Abernathy, & R. A. Calderon (Eds.), Arsenic: Exposure and health, science and technology letters (pp. 41–49). UK: Northwood.Google Scholar
  3. Al Rmalli, S. W., Haris, P. I., Harrington, C. F., & Ayub, M. (2005). A survey of arsenic in foodstuffs on sale in the United Kingdom and imported from Bangladesh. Science of the Total Environment, 337(1–3), 23–30.CrossRefGoogle Scholar
  4. Alam, M. G., Snow, E. T., & Tanaka, A. (2003). Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Science of the Total Environment, 308(1–3), 83–96.CrossRefGoogle Scholar
  5. Arain, M. B., Kazi, T. G., Baig, J. A., Jamali, M. K., Afridi, H. I., Shah, A. Q., et al. (2009). Determination of arsenic levels in lake water, sediment, and foodstuff from selected area of Sindh, Pakistan: Estimation of daily dietary intake. Food and Chemical Toxicology, 47(1), 242–248.CrossRefGoogle Scholar
  6. Berg, M., Stengel, C., Trang, P. T. K., Viet, P. H., Sampson, M. L., Leng, M., et al. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Science of the Total Environment, 372(2–3), 413–425.CrossRefGoogle Scholar
  7. Borak, J., & Hosgood, H. D. (2007). Seafood arsenic: Implications for human risk assessment. Regulatory Toxicology and Pharmacology, 47(2), 204–212.CrossRefGoogle Scholar
  8. Buschmann, J., Berg, M., Stengel, C., & Sampson, M. L. (2007). Arsenic and manganese contamination of drinking water resources in Cambodia: Coincidence of risk areas with low relief topography. Environmental Science and Technology, 41(7), 2146–2152.CrossRefGoogle Scholar
  9. Buschmann, J., Berg, M., Stengel, C., Winkel, L., Sampson, M. L., Trang, P. T. K., et al. (2008). Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environment International, 34(6), 756–764.CrossRefGoogle Scholar
  10. Chowdhury, U. K., Biswas, B. K., Chowdhury, T. R., Samanta, G., Mandal, B. K., Basu, G. C., et al. (2000). Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environmental Health Perspectives, 108(5), 393–397.CrossRefGoogle Scholar
  11. Chu, H. A., & Crawford-Brown, D. J. (2006). Inorganic arsenic in drinking water and bladder cancer: A meta-analysis for dose-response assessment. International Journal of Environmental Research and Public Health, 3(4), 316–322.CrossRefGoogle Scholar
  12. Dabeka, R. W., McKenzie, A. D., Lacroix, G. M., Cleroux, C., Bowe, S., Graham, R. A., et al. (1993). Survey of arsenic in total diet food composites and estimation of the dietary intake of arsenic by Canadian adults and children. Journal of AOAC International, 76(1), 14–25.Google Scholar
  13. Das, H. K., Mitra, A. K., Sengupta, P. K., Hossain, A., Islam, F., & Rabbani, G. H. (2004). Arsenic concentrations in rice, vegetables, and fish in Bangladesh: A preliminary study. Environment International, 30(3), 383–387.CrossRefGoogle Scholar
  14. Del Razo, L. M., Garcia-Vargas, G. G., Garcia-Salcedo, J., Sanmiguel, M. F., Rivera, M., Hernandez, M. C., et al. (2002). Arsenic levels in cooked food and assessment of adult dietary intake of arsenic in the Region Lagunera, Mexico. Food and Chemical Toxicology, 40(10), 1423–1431.CrossRefGoogle Scholar
  15. Fatmi, Z., Azam, I., Ahmed, F., Kazi, A., Gill, A. B., Kadir, M. M., et al. (2009). Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source? Environmental Research, 109(5), 575–581.CrossRefGoogle Scholar
  16. Fattorini, D., Alonso-Hernandez, C. M., Diaz-Asencio, M., Munoz-Caravaca, A., Pannacciulli, F. G., Tangherlini, M., et al. (2004). Chemical speciation of arsenic in different marine organisms: Importance in monitoring studies. Marine Environmental Research, 58(2–5), 845–850.CrossRefGoogle Scholar
  17. Gunderson, E. L. (1991). FDA total diet study, July 1986-April Dietary intakes of pesticides, selected elements, and other chemicals. Journal of AOAC International, 78(6), 1353–1363.Google Scholar
  18. Heitkemper, D. T., Vela, N. P., Stewart, K. R., & Westphal, C. S. (2001). Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 16(4), 299–306.CrossRefGoogle Scholar
  19. Hughes, M. F. (2006). Biomarkers of exposure: A case study with inorganic arsenic. Environmental Health Perspectives, 114(11), 1790–1796.Google Scholar
  20. JECFA (2011). Evaluation of certain contaminants in food: Seventy-second report of the joint FAO/WHO expert committee on food additives. World Health Organization, p. 115.Google Scholar
  21. Jorhem, L., Becker, W., & Slorach, S. (1998). Intake of 17 elements by Swedish women, determined by a 24-h duplicate portion study. Journal of Food Composition and Analysis, 11(1), 32–46.CrossRefGoogle Scholar
  22. Kozul, C. D., Hampton, T. H., Davey, J. C., Gosse, J. A., Nomikos, A. P., Eisenhauer, P. L., et al. (2009). Chronic exposure to arsenic in the drinking water alters the expression of immune response genes in mouse lung. Environmental Health Perspectives, 117(7), 1108–1115.CrossRefGoogle Scholar
  23. Lamm, S. H., Engel, A., Penn, C. A., Chen, R., & Feinleib, M. (2006). Arsenic cancer risk confounder in southwest Taiwan data set. Environmental Health Perspectives, 114(7), 1077–1082.CrossRefGoogle Scholar
  24. Li, H., Wu, C., Ye, Z. H., Wu, S. C., Wu, F. Y., & Wong, M. H. (2011). Uptake kinetics of different arsenic species in lowland and upland rice colonized with Glomus intraradices. Journal of Hazardous Materials, 194, 414–421.CrossRefGoogle Scholar
  25. Liang, C. P., Liu, C. W., Jang, C. S., Wang, S. W., & Lee, J. J. (2011). Assessing and managing the health risk due to ingestion of inorganic arsenic from fish and shellfish farmed in blackfoot disease areas for general Taiwanese. Journal of Hazardous Materials, 186, 622–628.CrossRefGoogle Scholar
  26. Llobet, J. M., Falco, G., Casas, C., Teixido, A., & Domingo, J. L. (2003). Concentrations of arsenic, cadmium, mercury, and lead in common foods and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain. Journal of Agricultural and Food Chemistry, 51(3), 838–842.CrossRefGoogle Scholar
  27. Luu, T. T. G., Sthiannopkao, S., & Kim, K. W. (2009). Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents in the Kandal Province of Cambodia. Environment International, 35(3), 455–460.CrossRefGoogle Scholar
  28. Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P., et al. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences, 105(29), 9931.CrossRefGoogle Scholar
  29. MAFF (2000). Duplicate diet study of vegetarians-dietary exposures to 12 metals and other elements (sheet 193). Food surveillance information sheet. In: Ministry of Agriculture FaF (Hrsg.).Google Scholar
  30. Meltzer, H. M., Mundal, H. H., Alexander, J., Bibow, K., & Ydersbond, T. A. (1994). Does dietary arsenic and mercury affect cutaneous bleeding time and blood lipids in humans? Biological Trace Element Research, 46(1–2), 135–153.CrossRefGoogle Scholar
  31. Millour, S., Noel, L., Kadar, A., Chekri, R., Vastel, C., Sirot, V., et al. (2011). Pb, Hg, Cd, As, Sb and Al levels in foodstuffs from the 2nd French total diet study. Food Chemistry, 126(4), 1787–1799.CrossRefGoogle Scholar
  32. Mondal, D., & Polya, D. A. (2008). Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: A probabilistic risk assessment. Applied Geochemistry, 23(11), 2987–2998.CrossRefGoogle Scholar
  33. Munoz, O., Bastias, J. M., Araya, M., Morales, A., Orellana, C., Rebolledo, R., et al. (2005). Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study. Food and Chemical Toxicology, 43(11), 1647–1655.CrossRefGoogle Scholar
  34. Ng, J. C., Wang, J., & Shraim, A. (2003). A global health problem caused by arsenic from natural sources. Chemosphere, 52(9), 1353–1359.CrossRefGoogle Scholar
  35. Ohno, K., Yanase, T., Matsuo, Y., Kimura, T., Rahman, M. H., Magara, Y., et al. (2007). Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh. Science of the Total Environment, 381(1–3), 68–76.CrossRefGoogle Scholar
  36. Othman, Z. A. (2010). Lead contamination in selected foods from Riyadh city market and estimation of the daily intake. Molecules, 15(10), 7482–7497.CrossRefGoogle Scholar
  37. Pfannhauser W. & Pechanek U. (1977). Lebensm Ernaehr 30: 88.Google Scholar
  38. Phan, K., Sthiannopkao, S., Kim, K. W., Wong, M. H., Sao, V., Hashim, J. H., et al. (2010). Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Research, 44(19), 5777–5788.CrossRefGoogle Scholar
  39. Roychowdhury, T., Tokunaga, H., & Ando, M. (2003). Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Science of the Total Environment, 308(1–3), 15–35.CrossRefGoogle Scholar
  40. Roychowdhury, T., Uchino, T., Tokunaga, H., & Ando, M. (2002). Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food and Chemical Toxicology, 40(11), 1611–1621.CrossRefGoogle Scholar
  41. Sapunar-Postruznik, J., Bazulic, D., & Kubala, H. (1996). Estimation of dietary intake of arsenic in the general population of the Republic of Croatia. Science of the Total Environment, 191(1–2), 119–123.CrossRefGoogle Scholar
  42. Schoof, R. A., Yost, L. J., Eickhoff, J., Crecelius, E. A., Cragin, D. W., Meacher, D. M., et al. (1999). A market basket survey of inorganic arsenic in food. Food and Chemical Toxicology, 37(8), 839–846.CrossRefGoogle Scholar
  43. Skrbic, B., & Predojevic, Z. (2008). Levels of organochlorine pesticides in crops and related products from Vojvodina, Serbia: Estimated dietary intake. Archives of Environmental Contamination and Toxicology, 54(4), 628–636.CrossRefGoogle Scholar
  44. Steinmaus, C., Carrigan, K., Kalman, D., Atallah, R., Yuan, Y., & Smith, A. H. (2005). Dietary intake and arsenic methylation in a U.S. population. Environmental Health Perspectives, 113(9), 1153–1159.CrossRefGoogle Scholar
  45. Sthiannopkao, S., Kim, K. W., Sotham, S., & Choup, S. (2008). Arsenic and manganese in tube well waters of Prey Veng and Kandal Provinces, Cambodia. Applied Geochemistry, 23(5), 1086–1093.CrossRefGoogle Scholar
  46. Tsuda, T., Inoue, T., Kojima, M., & Akoi, S. (1995). Market basket and duplicate portion estimation of dietary intake of cadmium, mercury, arsenic, copper, manganese, and zinc by Japanese adults. Journal of AOAC International, 78(6), 1363–1368.Google Scholar
  47. Urieta, I., Jalon, M., & Eguilero, I. (1996). Food surveillance in the Basque Country (Spain). II. Estimation of the dietary intake of organochlorine pesticides, heavy metals, arsenic, aflatoxin M1, iron and zinc through the Total Diet Study, 1990/91. Food Additives & Contaminants, 13(1), 13–29.CrossRefGoogle Scholar
  48. Wang, H. S., Sthiannopkao, S., Du, J., Chen, Z. J., Kim, K. W., Mohamed Yasin, M. S., et al. (2011). Daily intake and human risk assessment of organochlorine pesticides (OCPs) based on Cambodian market basket data. Journal of Hazardous Materials, 192(3), 1441–1449.CrossRefGoogle Scholar
  49. WHO (2012). Proposed Draft Maximum Levels for Arsenic in Rice. Joint FAO/WHO Food Standards Programme Codex committee on contaminants in foods. Sixth Session Maastricht, The Netherlands, 26–30 March 2012, p. 16.Google Scholar
  50. Wilhelm, M., Wittsiepe, J., Schrey, P., Lajoie-Junge, L., & Busch, V. (2003). Dietary intake of arsenic, mercury and selenium by children from a German North Sea island using duplicate portion sampling. Journal of Trace Elements in Medicine and Biology, 17(2), 123–132.CrossRefGoogle Scholar
  51. Xing, G. H., Wu, S. C., & Wong, M. H. (2010). Dietary exposure to PCBs based on food consumption survey and food basket analysis at Taizhou, China–The World’s major site for recycling transformers. Chemosphere, 81(10), 1239–1244.CrossRefGoogle Scholar
  52. Xu, X., McGrath, S., Meharg, A., & Zhao, F. (2008). Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science and Technology, 42(15), 5574–5579.CrossRefGoogle Scholar
  53. Zhang, W., Zhang, M., An, S., Lin, K. F., Li, H., Cui, C. Z., et al. (2012). The combined effect of decabromodiphenyl ether (BDE-209) and copper (Cu) on soil enzyme activities and microbial community structure. Environmental Toxicology and Pharmacology, 34(2), 358–369.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hong-Sheng Wang
    • 1
    • 2
  • Suthipong Sthiannopkao
    • 3
  • Zhuo-Jia Chen
    • 1
  • Yu-Bon Man
    • 2
  • Jun Du
    • 1
  • Guang-Hua Xing
    • 2
  • Kyoung-Woong Kim
    • 4
  • Mohamed Salleh Mohamed Yasin
    • 5
  • Jamal Hisham Hashim
    • 5
  • Ming-Hung Wong
    • 2
    • 6
  1. 1. Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical SciencesSun Yat-sen UniversityGuangzhouChina
  2. 2.Department of Biology, Croucher Institute for Environmental SciencesHong Kong Baptist UniversityHong KongChina
  3. 3.Department of Environmental Engineering, College of EngineeringDong-A UniversityBusanRepublic of Korea
  4. 4.School of Environmental Science and EngineeringGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
  5. 5.United Nations University-International Institute for Global HealthKuala LumpurMalaysia
  6. 6.School of Environment and ResourcesZhejiang Agriculture and Forestry UniversityLinanPeople’s Republic of China

Personalised recommendations