Skip to main content
Log in

Long-term geochemical evolution of acidic mine wastes under anaerobic conditions

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

A nearly 5-year anaerobic incubation experiment was conducted to observe the geochemical evolution of an acidic mine waste. Long-term storage of the mine waste under strict anaerobic conditions caused marked increase in aqueous sulfur, while aqueous iron showed no remarkable change. Co-existing oxidation and reduction of elemental sulfur appeared to play a central role in controlling the evolutionary trends of aqueous sulfur and iron. Addition of organic matter increased the aqueous Fe concentration, possibly due to enhanced iron mobilization by microbial iron reduction and increased iron solubility by forming organically complexed Fe species. Further addition of CaCO3 resulted in immobilization of aqueous iron and sulfur due to elevated pH and gypsum formation. The chemical behaviors of environmentally significant metals were markedly affected by the added organic matter; Al, Cr, Cu, Ni and Zn tended to be immobilized probably due to elevated pH and complexation with insoluble organic molecules, while As and Pb tended to be mobilized. Jarosite exhibited high stability after nearly 5 years of anaerobic incubation and even under circumneutral pH conditions. Long-term weathering of aluminosilicate through acid attack raised pH, while continuous reaction between the added CaCO3 and mine waste-borne stored acid decreased pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe, T., Hoshino, T., Nakamura, A., & Takaya, N. (2007). Anaerobic elemental sulfur reduction by fungus Fusarium oxysporum. Bioscience, Biotechnology, and Biochemistry, 71(10), 2102–2407.

    Google Scholar 

  • Amoroso, G. G., & Fassina, V. (1983). Stone decay and conservation—atmospheric pollution, cleaning, consolidation and protection (p. 453). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Bartakova, I., Kummerova, M., Mandl, M., & Pospisil, M. (2001). Phytotoxicity of iron in relation to its solubility conditions and the effect of ionic strength. Plant and Soil, 235, 45–51.

    Article  CAS  Google Scholar 

  • Bauer, M., & Blodau, C. (2006). Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Science of the Total Environment, 354(2–3), 179–190.

    Article  CAS  Google Scholar 

  • Bozkurt, S., Sifvert, M., Moreno, L., & Neretnieks, I. (2001). The long-term evolution of and transport processes in a self-sustained final cover on waste deposits. Science of the Total Environment, 271(1–3), 145–168.

    Article  CAS  Google Scholar 

  • Campbell, R. N., Linndsay, P., & Clemens, A. H. (2001). Acid generating potential of waste rock and coal ash in New Zealand coal mines. International Journal of Coal Geology, 45(2–3), 163–179.

    Article  CAS  Google Scholar 

  • Colon, M., Iglesias, M., Hidalgo, M., & Todolí, J. L. (2008). Sulfide and sulfate determination in water samples by means of hydrogen sulfide generation-inductively coupled plasma-atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 23, 416–418.

    Article  CAS  Google Scholar 

  • Craw, D. (2000). Water–rock interaction and acid neutralization in a large schist debris dam, Otago, New Zealand. Chemical Geology, 171(1–2), 17–32.

    Article  CAS  Google Scholar 

  • Dawson, J. J., Tetzlaff, D., Carey, A. M., Raab, A., Soulsby, C., Killham, K., et al. (2010). Characterizing Pb Mobilization from Upland Soils to Streams Using 206Pb/207Pb Isotopic Ratios. Environmental Science and Technology, 44(1), 243–249.

    Article  CAS  Google Scholar 

  • Dutrizac, J. E. (2004). The behaviour of the rare earths during the precipitation of sodium, potassium and lead jarosites. Hydrometallurgy, 73, 11–30.

    Article  CAS  Google Scholar 

  • Fang, H., Young D., & Nesic, S. (2008). Corrosion of mild steel in the presence of elemental sulfur. Corrosion 2008, New Orleans LA, NACE International.

  • Ferderer, D. A. (1996). National overview of abandoned mine land sites utilizing the Minerals Availability System (MAS) and Geographic Information System (GIS) technology (pp. 96–549). Report: U.S. Geological Survey Open-File.

    Google Scholar 

  • Giere, R., Sidenko, N. V., & Lazareva, E. V. (2003). The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide waters (Berikul gold mine, Siberia). Applied Geochemistry, 18, 1347–1359.

    Article  CAS  Google Scholar 

  • Hallberg, R. O., Granhagen, J. R. & Liljemark, A. (2005). A fly ash/biosludge dry cover for the mitigation of AMD at the falun mine. Chemie der ErdeGeochemistry, 65(s1), 43–63.

    Google Scholar 

  • Hammack, R. W., Edenborn, H. M., & Dvorak, D. H. (1994). Treatment of water from an open-pit copper mine using biogenic sulfide and limestone: A feasibility study. Water Research, 28(11), 2321–2329.

    Article  CAS  Google Scholar 

  • Hudson-Edwards, K. A. (2003). Sources, mineralogy, chemistry and fate of heavy metal-bearing particles in mining-affected river systems. Mineralogical Magazine, 67, 205–217.

    Article  CAS  Google Scholar 

  • Johnson, D. B. (2003). Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water, Air, & Soil Pollution: Focus, 3, 47–66.

    CAS  Google Scholar 

  • Kucera, J., Bouchal, P., Cerna, H., Potesil, D., Janiczek, O., Zdrahal, Z., et al. (2012). Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. Antonie van Leeuwenhoek, 101(3), 561–573.

    Article  CAS  Google Scholar 

  • Lin, C., Wu, Y., Lu, W., Chen, A., & Liu, Y. (2007). Water chemistry and ecotoxicity of an acid mine drainage-affected stream in subtropical China during a major flood event. Journal of Hazardous Materials, 142(1–2), 199–207.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (1987). Organic matter mineralization with the reduction of ferric iron: A review. Geomicrobiology Journal, 5, 375–399.

    Article  CAS  Google Scholar 

  • Malmström, M. E., Gleisner, M., & Herbert, R. B. (2006). Element discharge from pyritic mine tailings at limited oxygen availability in column experiments. Applied Geochemistry, 21(1), 184–202.

    Article  Google Scholar 

  • Montero-Sanchez, I. C., Brimhall, G. H., Alpers, C. N., & Swayze, G. A. (2005). Characterization of waste rock associated with acid drainage at the Penn Mine, California, by ground-based visible to short-wave infrared reflectance spectroscopy assisted by digital mapping. Chemical Geology, 215(1–4), 453–472.

    Article  Google Scholar 

  • Peppas, A., Komnitsas, K., & Halikia, I. (2000). Use of organic covers for acid mine drainage control. Minerals Engineering, 13(5), 563–574.

    Article  CAS  Google Scholar 

  • Perduce, E. M., Beck, K. C., & Reuter, J. H. (1976). Organic complexes of iron and aluminium in natural waters. Nature, 260, 418–420.

    Article  Google Scholar 

  • Piantone, P., Bodénan, F., & Chatelet-Snidaro, L. (2004). Mineralogical study of secondary mineral phases from weathered MSWI bottom ash: Implications for the modelling and trapping of heavy metals. Applied Geochemistry, 19(12), 1891–1904.

    Article  CAS  Google Scholar 

  • Refait, P., Benali, O., Abdelmoula, M., & Génin, J. M. R. (2003). Formation of ‘ferric green rust’ and/or ferrihydrite by fast oxidation of iron(II–III) hydroxychloride green rust. Corrosion Science, 45(11), 2435–2449.

    Article  CAS  Google Scholar 

  • Rhoades, J. D. (1982). Soluble salts. In A. L. Page (Ed.), Methods of soil analysis (2), 2nd edn, Agronomy 9(2) (pp. 167–169). American Society of Agronomy, Inc., and Soil Science Society of America, Inc., Madison, WI.

  • Romano, C. G., Mayer, K. U., Jones, D. R., Ellerbroek, D. A., & Blowes, D. W. (2003). Effectiveness of various cover scenarios on the rate of sulphide oxidation of mine tailings. Journal of Hydrology, 271, 171–187.

    Article  CAS  Google Scholar 

  • Schütz, M., & Kunkee, R. E. (1977). Formation of hydrogen sulfide from elemental sulphur during fermentation by wine yeast. American Journal of Enology and Viticulture, 28(3), 137–144.

    Google Scholar 

  • Velasco, F., Alvaro, A., Suarez, S., Herrero, J. M., & Yusta, I. (2005). Mapping Fe-bearing hydrated sulphate minerals with short wave infrared (SWIR) spectral analysis at San Miguel mine environment, Iberian Pyrite Belt (SW Spain). Journal of Geochemical Exploration, 87(2), 45–72.

    Article  CAS  Google Scholar 

  • Zhou, J., Niu, Y., & Qin, W. (2003). Effects of sulfide minerals on acidithiobacillus ferrooxidans. The Chinese Journal of Nonferrous Metals, 13, 1278–1282.

    CAS  Google Scholar 

  • Zhu, L., Lin, C., Wu, Y., Lu, W., Liu, Y., Ma, Y., et al. (2008). Jarosite-related chemical processes and water ecotoxicity in simplified anaerobic microcosm wetlands. Environmental Geology, 53(7), 1491–1502.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (Project numbers: 40471067 and 40773058), the Guangdong Bureau of Science and Technology (Project no. 2005A30402006), and the South China Institute of Environmental Science (Project No. zx_200911_002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuxia Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W., Lin, C. & Ma, Y. Long-term geochemical evolution of acidic mine wastes under anaerobic conditions. Environ Geochem Health 35, 523–533 (2013). https://doi.org/10.1007/s10653-013-9512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-013-9512-4

Keywords

Navigation