Skip to main content
Log in

Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amiard, J. C., Amiard-Triquet, C., Berthet, B., & Metayer, C. (1987). Comparative study of the patterns of bioaccumulation of essential (Cu, Zn) and non-essential (Cd, Pb) trace metals in various estuarine and coastal organisms. Journal of Experimental Marine Biology and Ecology, 106, 73–89.

    Article  CAS  Google Scholar 

  • Andres, S., Ribeyre, F., Tourencq, J. N., & Boudou, A. (2000). Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France). Science of the Total Environment, 248, 11–25.

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association). (1995). Standard Methods for Examination of Water and Wastewater (19th ed.). Washington: American Public Health Association.

    Google Scholar 

  • Atchison, G. J., Sandheinrich, M. B., & Bryan, M. D. (1996). Effects of environmental stressors on interspecific interactions of aquatic animals. In M. C. Newman & C. H. Jagoe (Eds.), Quantitative ecotoxicology: A hierarchical approach (pp. 319–345). Boca Raton: Lewis.

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry). (2007). CERCLA Priority List of Hazardous Substances. http://www.atsdr.cdc.gov/cercla/05list.htmlN.

  • Australia New Zealand Food Authority. (1999). Food Standards Code in the Gazette, Australia New Zealand Food Authority.

  • Biagini, R., Rivero, M., Salvador, M., & Córdoba, S. (1978). Hidroarsenicismo crónico y cáncer de pulmón. Archivos Argentinos de Dermatología, 28, 151–158.

    Google Scholar 

  • Blanco, M. C., Paoloni, J. D., Morrás, H. J. M., Fiorentino, C. E., & Sequeira, M. (2006). Content and Distribution of Arsenic in Soils, Sediments and Groundwater Environments of the Southern Pampa Region, Argentina. Environmental Toxicology, 21, 561–574.

    Google Scholar 

  • Bryan, G. W. (1971). The effects of heavy metals (other than mercury) on marine and estuarine organisms. Proceedings of the Royal Society of London, 177, 389–410.

    Article  CAS  Google Scholar 

  • Bryan, G. W. (1984). Pollution due to heavy metals and their compounds. Marine Ecology, 5, 1289–1431.

    CAS  Google Scholar 

  • Casper, S. T., Mehra, A., Farago, M. E., & Gill, R. A. (2004). Contamination of surface soils, river water and sediments by trace metals from copper processing industry in the Churnet River Valley, Staffordshire, UK. Environmental Geochemistry and Health, 26, 59–67.

    Article  CAS  Google Scholar 

  • Chen, C. J., Hsueh, Y. M., Tseng, M. P., Lin, Y. C., Hsu, L. I., & Chou, W. L. (2001). Individual susceptibility to arseniasis. In W. R. Chappell, C. O. Abernathy, & C. L. Calderon (Eds.), Arsenic exposure and health effects. Oxford: Elsevier.

    Google Scholar 

  • Cheung, K. C., Leung, H. M., & Wong, M. H. (2008). Metal concentrations of common freshwater and marine fish from the Pearl River Delta, South China. Archives of Environmental Contamination and Toxicology, 54, 705–715.

    Article  CAS  Google Scholar 

  • Chevreuil, M., Carru, A.-M., Chesterikoff, A., Boët, P., Tales, E., & Allardi, J. (1995). Contamination of fish from different areas of the river Seine (France) by organic (PCB and pesticides) and metallic (Cd, Cr, Cu, Fe, Mn, Pb and Zn) micropollutants. Science of the Total Environment, 162, 31–42.

    Article  CAS  Google Scholar 

  • Ciardullo, S., Aureli, F., Raggi, A., & Cubadda, F. (2010). Arsenic speciation in freshwater fish: Focus on extraction and mass balance. Talanta, 81, 213–221.

    Article  CAS  Google Scholar 

  • Culioli, J.-L., Calendini, S., Mori, C., & Orsini, A. (2009a). Arsenic accumulation in a freshwater fish living in a contaminated river of Corsica, France. Ecotoxicology and Environmental Safety, 72, 1440–1445.

    Article  CAS  Google Scholar 

  • Culioli, J.-L., Fouquoirea, A., Calendini, S., Mori, C., & Orsini, A. (2009b). Trophic transfer of arsenic and antimony in a freshwater ecosystem: A field study. Aquatic Toxicology, 94, 286–293.

    Article  CAS  Google Scholar 

  • Daniel, W. W. (1978). Applied nonparametric statistics. Boston: Houghton Mifflin Company.

    Google Scholar 

  • Das, H. K., Mitra, A. K., Sengupta, P. K., Hossain, A., Islam, F., & Rabbani, G. H. (2004). Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environment International, 30, 383–387.

    Article  CAS  Google Scholar 

  • Donohue, J. M., & Abernathy, C. O. (1999). Exposure to inorganic arsenic from fish and shellfish. In W. R. Chappell, C. O. Abernathy, & R. L. Calderon (Eds.), Arsenic exposure and health effect. Oxford: Elsevier.

    Google Scholar 

  • FAO/WHO. (2010). Summary and conclusions of the 72 meeting of the Joint FAO/WHO Expert Committee on Food Additives. Rome, Food and Agriculture Organization of the United Nations; Geneva, World Health Organization (JECFA/72/SC; http://www.who.int/foodsafety/chem/summary72_rev.pdf).

  • Feijoó, C. S., & Lombardo, R. J. (2007). Baseline water quality and macrophyte assemblages in Pampean streams: a regional approach. Water Research, 41, 1399–1410.

    Google Scholar 

  • Gladyshev, M. I., Gribovskaya, I. V., Moskvicheva, A. V., Muchkina, E. Y., Chuprov, S. M., & Ivanova, E. A. (2001). Content of metals in compartments of ecosystem of a siberian pond. Archives of Environmental Contamination and Toxicology, 41, 157–162.

    Article  CAS  Google Scholar 

  • Gutleb, A. C., Helsberg, A., & Mitchell, C. (2002). Heavy metal concentrations in fish from a pristine rainforest valley in Peru: A baseline study before the start of oil-drilling activities. Bulletin of Environment Contamination and Toxicology, 69, 523–529.

    Article  CAS  Google Scholar 

  • Håkanson, L. (1980). An ecological Risk index for aquatic pollution control: a sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Håkanson, L. (1984). Metals in fish and sediments from the River Kolbäcksån water system, Sweden. Archiv für Hydrobiologie, 101, 373–400.

    Google Scholar 

  • Has-Schön, E., Bogut, I., Rajkovic, V., Bogut, S., Cacic, M., & Horvatic, J. (2008). Heavy metal distribution in tissues of six fish species included in human diet, inhabiting freshwaters of the nature park ‘‘Hutovo Blato’’ (Bosnia and Herzegovina). Archives of Environmental Contamination and Toxicology, 54, 75–83.

    Article  Google Scholar 

  • Has-Schön, E., Bogut, I., & Strelec, I. (2006). Heavy metal profile in five fish species included in human diet, domiciled in the end flow of river Neretva (Croatia). Archives of Environmental Contamination and Toxicology, 50, 545–551.

    Article  Google Scholar 

  • Hong Kong Government. (1987). Food Adulteration (Metallic Contamination) Regulations. Laws of Hong Kong 2; Chapter 132.

  • IARC (International Association for Research on Cancer). (1987). IARC monographs on the evaluation of carcinogenic risks of chemicals to humans. Suppl. 7: Overall evaluations of Carcinogenicity: Updating of IARC Monographs. IARC, Lyon. 1:42.

  • Ion, J., de Lafontaine, Y., Dumont, P., & Lapierre, L. (1997). Contaminant levels in St Lawrence River yellow perch (Perca flavescens): spatial variation and implications for monitoring. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2930–2946.

    Article  CAS  Google Scholar 

  • IPCS. (2001). Arsenic and arsenic compounds, 2nd ed. Geneva, World Health Organization, International Programme on Chemical Safety (Environmental Health Criteria 224; http://whqlibdoc.who.int/ehc/WHO_EHC_224.pdf).

  • Jankong, P., Chalhoub, C., Kienzl, N., Goessler, W., Francesconi, K. A., & Visoottiviseth, P. (2007). Arsenic accumulation and speciation in freshwater fish living in arsenic-contaminated waters. Environmental Chemistry, 4, 11–17.

    Article  CAS  Google Scholar 

  • Keith, L. H. (1991). Environmental Sampling and Analysis: A Practical Guide. Boca Raton: Lewis Publ/CRC Press.

    Google Scholar 

  • Keller, C., & Hammer, D. (2004). Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils. Environmental Pollution, 131, 243–254.

    Article  CAS  Google Scholar 

  • Kuznetsova, A. I., Zarubina, O. V., & Leonova, G. A. (2002). Comparison of Zn, Cu, Pb, Ni, Cr, Sn, Mo concentrations in tissues of fish (roach and perch) from lake Baikal and Bratsk reservoir, Russia. Environmental Geochemistry and Health, 24, 205–213.

    Article  CAS  Google Scholar 

  • Liao, C. M., & Ling, M. P. (2003). Assessment of Human Health Risks for Arsenic Bioaccumulation in Tilapia (Oreochromis mossambicus) and Large-Scale Mullet (Liza macrolepis) from Blackfoot Disease Area in Taiwan. Archives of Environmental Contamination and Toxicology, 45, 264–272.

    Article  CAS  Google Scholar 

  • Ling, M. P., Hsu, H. T., Shie, R. H., Wu, C. C., & Hong, Y. S. (2009). health risk of consuming heavy metals in farmed tilapia in central Taiwan. Bulletin of Environment Contamination and Toxicology, 83, 558–564.

    Article  CAS  Google Scholar 

  • Liu, J., Li, Y., Zhang, B., Cao, J., Cao, Z., & Domagalski, J. (2009). Ecological risk of heavy metals in sediments of the Luan River source water. Ecotoxicology, 18, 748–758.

    Article  CAS  Google Scholar 

  • Maher, W., Goessler, W., Kirby, J., & Raber, G. (1999). Arsenic concentrations and speciation in the tissues and blood of sea mullet Mugil cephalus from Lake Macquarie NSW, Australia. Marine Chemistry, 68, 169–182.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Marcovecchio, J. E. (1988). Estudio comparativo de la distribución de los metales traza mercurio, cadmio y zinc en organismos de dos zonas estuariales de Argentina: Bahía Blanca y desembocadura del Río de la Plata. Unpublished Ph.D. Thesis, UNMDP (Argentina). pp. 222.

  • Marcovecchio, J. E. (2004). The use of Micropogonias furnieri and Mugil liza as bioindicators of heavy metals pollution in La Plata river estuary, Argentina. Science of the Total Environment, 323, 219–226.

    Article  CAS  Google Scholar 

  • Markert, B., Oehlmann, J., & Roth, M. (1997). General aspects of heavy metal monitoring by plants and animals. In K. S. Subramanian, & G. V. Iyengar (Eds.), Environmental biomonitoring: Exposure assessment and specimen banking (pp. 18–29). Washington: Am Chem Soc Symp Ser No. 654.

  • McIntyre, D. O., & Linton, T. K. (2011). Fish Physiology, 31, (PART B.). Elsevier. doi:10.1016/S1546-5098(11)31028-X.

  • Moiseenko, T. I. (1999). Estimation of an ecological danger under pollution of waters by metals. Vodnyie Resursy, 26, 186–197.

    Google Scholar 

  • Mora, M. A., Papoulias, D., Nava, I., & Buckler, D. R. (2001). A comparative assessment of contaminants in fish from four resacas of the Texas, USA–Tamaulipas, Mexico border region. Environment International, 27, 15–20.

    Google Scholar 

  • Mudrock, A., & Macknight, S. D. (1994). Techniques for aquatic sediments sampling. Boca Raton: Lewis Publ.

    Google Scholar 

  • Müller, G. (1979). Schwermetallen in den Redimen des rheins. Veranderrugen Seit. Umschau, 79, 778–783.

    Google Scholar 

  • Oyewale, A. O., & Musa, I. (2006). Pollution assessment of the lower basin of Lakes Kainji/Jebba, Nigeria: heavy metal status of the waters, sediments and fishes. Environmental Geochemistry and Health, 28, 273–281.

    Article  CAS  Google Scholar 

  • Paoloni, J. D., Sequeira, M. E., Espósito, M. E., Fiorentino, C. E., & Blanco, M. C. (2009). Arsenic in water resources of the Southern Pampa Plains, Argentina. Journal of Environmental and Public Health. doi:10.1155/2009/216470.

  • Paoloni, J. D., Sequeira, M. E., & Fiorentino, C. E. (2005). Mapping of arsenic content and distribution in groundwater in the Southeast Pampa Argentina. Journal of Environmental Health, 67(8), 50–53.

    CAS  Google Scholar 

  • Parada, J. M. (2008). A pedal corer for the quantitative sampling of sediments and benthic organisms in submerged areas accessible on foot. Hydrobiologia, 610, 351–354.

    Article  Google Scholar 

  • Phillips, D. J. H., & Rainbow, P. S. (1993). Biomonitoring of Trace Aquatic Contaminants (pp. 1–371). London: Elsevier.

    Book  Google Scholar 

  • Rashed, M. N. (2001). Monitoring of environmental heavy metals in fish from Nasser Lake. Environment International, 27, 27–33.

    Article  CAS  Google Scholar 

  • Rosso, J. J., & Fernández Cirelli, A. (2012). Effects of land use on environmental conditions and macrophytes in prairie lotic ecosystems. Limnologica. http://dx.doi.org/10.1016/j.limno.2012.06.001.

  • Rosso, J. J., Puntoriero, M. L., Troncoso, J. J., Volpedo, A. V., & Fernández Cirelli, A. (2011a). Occurrence of Fluoride in Arsenic-rich Surface Waters: a Case Study in the Pampa Plain, Argentina. Bulletin of Environmental Contamination and Toxicology, 87, 409–413.

  • Rosso, J. J., Troncoso, J. J., & Fernández Cirelli, A. (2011b). Geographic Distribution of Arsenic and Trace Metals in Lotic Ecosystems of the Pampa Plain, Argentina. Bulletin of Environment Contamination and Toxicology, 86, 129–132.

    Article  CAS  Google Scholar 

  • Sager, M., & Pucsko, R. (1991). Trace element concentrations of oligochaetes and relations to sediment characteristics in the reservoirs at Altenworth/Austria. Hydrobiologia, 226, 39–49.

    Article  CAS  Google Scholar 

  • Schenone, N., Volpedo, A. V., & Fernández Cirelli, A. (2007). Trace metal contents in water and sediments in Samborombón Bay wetland, Argentina. Wetlands Ecology and Management, 15, 303–310.

    Article  Google Scholar 

  • Shukla, J. P., & Pandey, K. (1984a). Impaired spermatogenesis in arsenic treated freshwater fish Colisa fasciatus (Bl. and Sch.). Toxicology Letters, 21, 191–195.

    Article  CAS  Google Scholar 

  • Shukla, J. P., & Pandey, K. (1984b). Impaired ovarian functions in arsenic treated freshwater fish Colisa fasciatus (Bl. and Sch.). Toxicology Letters, 20, 1–3.

    Article  CAS  Google Scholar 

  • Singh, K. P., Mohan, D., Singh, V. K., & Malik, A. (2005). Studies on distribution and fractionation of heavy metals in Gomti river sediments—A tributary of the Ganges, India. Journal of Hydrology (Amst), 312, 14–27.

    Article  CAS  Google Scholar 

  • Šlejkovec, Z., Bajc, Z., & Doganoc, D. Z. (2004). Arsenic speciation patterns in freshwater fish. Talanta, 62, 931–936.

    Article  Google Scholar 

  • Smedley, P., & Kinniburg, D. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., Barros, A. J., & Tullio, J. O. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemestry, 17, 259–284.

    Google Scholar 

  • SRH (Subsecretaria de Recursos Hídricos de Argentina). (2006). Niveles Guía de Calidad de Aguas. http://hidricos.obraspublicas.gov.ar/calidad_del_agua_actividades.htm. Accessed 11 July 2011.

  • Szarek-Gwiazda, E., & Amirowicz, A. (2006). Bioaccumulation of trace elements in roach, silver bream, rudd, and perch living in an inundated opencast sulphur mine. Aquatic Ecology, 40, 221–236.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedephol, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of American Chemistry, 51(7), 844–851.

    Google Scholar 

  • US Food and Drug Administration (USFDA). (1993). Guidance document for arsenic in shellfish. Washington: US Food and Drug Administration.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). (1997). IRIS (Integrated Risk Information System). On-line database maintained in Toxicology Data Network (TOXNET). Bethesda MD: National Library of Medicine.

  • USEPA (U.S. Environmental Protection Agency). (2000). Guidance for assessing chemical contaminant, data for use in fish advisories. Volume 2. Risk assessment and fish consumption limits (3rd ed.). DC: Washington.

    Google Scholar 

  • Weber, D. N. (1997). Mechanisms of behavioral toxicology: An integrated approach. American Zoologist, 37, 343–345.

    Google Scholar 

  • WHO. (2008). Guidelines for drinking-water quality, 3rd edition incorporating 1st and 2nd addenda. Vol. 1. Recommendations (pp. 306–308b). Geneva: World Health Organization. (http://www.who.int/water_sanitation_health/dwq/GDW12rev1and2.pdf).

  • Yang, Z., Wang, Y., Shen, Z., Niu, J., & Tang, Z. (2008). Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangze River catchment of Wuhan, China. Journal of Hazardous Materials, 166(2–3), 1186–1194.

    Google Scholar 

Download references

Acknowledgments

Authors are indebted to the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad de Buenos Aires (UBA) for financial support. We thank Juan José Troncoso for his technical assistance in sample processing. We also thank Alejandro Travi, Diego Laura, Hugo Carrizo and Luis Rey Ocampo for their collaboration in the field. Pablo Blanco and his troop at the Sauce Grande Lake were crucial for logistic aspects of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan José Rosso or Alicia Fernández Cirelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosso, J.J., Schenone, N.F., Pérez Carrera, A. et al. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers. Environ Geochem Health 35, 201–214 (2013). https://doi.org/10.1007/s10653-012-9476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-012-9476-9

Keywords

Navigation