Skip to main content

Advertisement

Log in

Arsenic and lead contamination in urban soils of Villa de la Paz (Mexico) affected by historical mine wastes and its effect on children’s health studied by micronucleated exfoliated cells assay

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Environmental geochemical and health studies were carried out in urban areas of Villa de la Paz, S.L.P. (Mexico), where mining activities have been developed for more of 200 years, leading to the pollution of surface soil by arsenic and heavy metals (Pb, Cd, Cu, Zn). The analysis of urban soils to determine total and bioaccessibility concentrations of As and Pb, demonstrated a combined contribution of the natural and anthropogenic concentrations in the site, at levels higher than the environmental guideline values that provoke a human health risk. Contour soil mapping confirmed that historical mine waste deposits without environmental control measures, are the main source of pollution soil by As and Pb in the site. Exposure (Pb in blood and As in urine) and effect (micronucleated exfoliated cells assay) biological monitoring were then carried out in the childhood population of the site and in a control site. The exposure biological monitoring demonstrated that at least 20–30 % of children presented Pb and As exposure values higher than the national and international maximum intervention values. The effect biomonitoring by MEC assay confirmed that there is a genotoxic damage in local childhood population that could be associated with the arsenic exposure in the site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barbosa, F., Tanus-Santos, J. E., Gerlach, R. F., & Parsons, P. J. (2005). A critical review of biomarkers used for monitoring human exposure to lead: Advantages, limitations, and future needs. Environmental Health Perspectives, 113(12), 1669–1674.

    Article  CAS  Google Scholar 

  • Barcan, V. I., & Kovnatsky, E. (1998). Soil surface geochemical anomaly around the copper-nickel metallurgical smelter. Water, Air and Soil Pollution, 103(1–4), 197–218.

    Article  CAS  Google Scholar 

  • Bartolotta, S. A., Pacskowski, M. G., Hick, A., & Carballo, M. A. (2011). Micronuclei assay in exfoliated buccal cells from individuals exposed to arsenic in Argentina. Archives of Environmental Contamination and Toxicology, 61(2), 337–343.

    Article  CAS  Google Scholar 

  • Basu, A., Ghosh, P., Das, J., Banerjee, A., & Ray, K. (2004). Micronuclei as biomarkers of carcinogen exposure in populations exposed to arsenic through drinking water in West Bengal, India: A comparative study in three cell types. Cancer Epidemiology, Biomarkers and Prevention, 13(5), 820–827.

    CAS  Google Scholar 

  • Basu, A., Mahata, J., Roy, A. K., Sarkar, J. N., Poddar, G., et al. (2002). Enhanced frequency of micronuclei in individuals exposed to arsenic through drinking water in West Bengal. India. Mutation Research, 516(1–2), 29–40.

    Article  CAS  Google Scholar 

  • Biggs, M. L., Kalman, D. A., Moore, L. E., Hopenhayn-Rich, C., Smith, M. T., et al. (1997). Relationship of urinary arsenic to intake estimates and a biomarker of effect, bladder cell micronuclei. Mutation Research, 386, 185–195.

    Article  CAS  Google Scholar 

  • Bonassi, S., Coskun, E., Ceppi, M., Lando, C., Bolognesi, C., et al. (2011). The HUman MicroNucleus project on eXfoLiated buccal cells (HUMN(XL)): The role of life-style, host factors, occupational exposures, health status, and assay protocol. Mutation Research, 728(3), 88–97.

    Article  CAS  Google Scholar 

  • Bonassi, S., Znaor, A., Ceppi, M., Lando, C., Chang, W. P., et al. (2007). An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis, 28(3), 625–631.

    Article  CAS  Google Scholar 

  • Brown, B. (1982). Creatinine measurement module operating and service instructions. Brea, CA: Beckman Instruments.

    Google Scholar 

  • Calabrese, E. J., Stanek, E. J., & Barnes, R. M. (1997a). Soil ingestion rates in children identified by parental observation as likely high soil ingesters. Journal of Soil Contamination, 6(3), 271–279.

    Article  CAS  Google Scholar 

  • Calabrese, E. J., Stanek, E. J., Pekow, P., & Barnes, R. M. (1997b). Soil ingestion estimates for children residing on a Superfund site. Ecotoxicology Environmental Safety, 36, 258–268.

    Article  CAS  Google Scholar 

  • Calderón, J., Navarro, M. E., Jimenez-Capdeville, M. E., Santos-Diaz, M. A., Golden, A., et al. (2001). Exposure to arsenic and lead and neuropsychological development in Mexican children. Environmental Research, 85(2), 69–76.

    Article  Google Scholar 

  • Carrizales, L., Razo, I., Téllez-Hernández, J. I., Torres-Nerio, R., Torres, A., et al. (2006). Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure of children. Environmental Research, 101(1), 1–10.

    Article  CAS  Google Scholar 

  • Castro-Larragoitia, J., Kramar, U., & Puchelt, H. (1997). 200 years of mining activities at La Paz/San Luis Potosí/Mexico-Consequences for environment and geochemical exploration. Journal of Geochemical Exploration, 58, 81–91.

    Article  CAS  Google Scholar 

  • Ceppi, M., Gallo, F., & Bonassi, S. (2010). Study design and statistical analysis of data in human population studies with the micronucleus assay. Mutagenesis, 26(1), 247–252.

    Article  Google Scholar 

  • Chiprés, J. A., Castro-Larragoitia, J., & Monroy, M. (2009). Exploratory and spatial data analyses (EDA-SDA) for determining regional background levels and anomalies of potentially toxic elements in soils from Catorce-Matehuala, Mexico. Applied Geochemistry, 24, 1579–1589.

    Article  Google Scholar 

  • Chiprés, J. A., Salinas, J. C., Castro-Larragoitia, J., & Monroy, M. (2008). Geochemical mapping of major and trace elements in soils from the Altiplano Potosino, Mexico: A multi-scale comparison. Geochemistry: Environment, Exploration, Analysis, 8, 279–290.

    Article  Google Scholar 

  • Cook, M., Chappell, W. R., Hoffman, R. E., & Mangione, E. J. (1993). Assessment of blood lead levels in children living in a historic mining and smelting community. American Journal Epidemiology, 137(4), 447–455.

    CAS  Google Scholar 

  • Coronado-González, J. A., del Razo, L. M., García-Vargas, G., Sanmiguel-Salazar, F., & Escobedo-de la Peña, J. (2007). Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico. Environmental Research, 104(3), 383–389.

    Article  Google Scholar 

  • Dogan, M., & Dogan, A. U. (2007). Arsenic mineralization, source, distribution, and abundance in the Kutahya región of the western Anatolia, Turkey. Environmental Geochemical and Health, 29, 119–129.

    Article  CAS  Google Scholar 

  • Fenech, M., Holland, N., Chang, W. P., Zeiger, E., & Bonassi, S. (1999). The Human MicroNucleus project—An international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutation Research, 428, 271–283.

    Article  CAS  Google Scholar 

  • Garrett, R. G. (1969). The determination of sampling and analytical errors in exploration geochemistry. Economic Geology, 64, 568–569.

    Article  Google Scholar 

  • Ghosh, P., Roy, C., Das, N. K., & Sengupta, S. R. (2008). Epidemiology and prevention of chronic arsenicosis: An Indian perspective. Indian Journal of Dermatology Venereology Leprology, 74(6), 582–593.

    Article  Google Scholar 

  • Gómez-Arroyo, S., Diaz-Sanchez, Y., Meneses-Perez, M. A., Villalobos-Pietrini, R., & De Leon-Rodriguez, J. D. (2000). Cytogenetic biomonitoring in a Mexican floriculture worker group exposed to pesticides. Mutation Research, 466, 117–124.

    Article  Google Scholar 

  • Gonsebatt, M. E., Vega, L., Salazar, A. M., Montero, R., Guzmán, P., et al. (1997). Cytogenetic effects in human exposure to arsenic. Mutation Research, 386(3), 219–228.

    Article  CAS  Google Scholar 

  • Gulson, B. L., Davis, J. J., Mizon, K. J., Korsch, M. J., Law, A. J., et al. (1994). Lead bioavailability in the environment of children: Blood lead levels in children can be elevated in a mining community. Archives of Environmental Health, 49(5), 326–331.

    Article  CAS  Google Scholar 

  • Hinwood, A. L., Sim, M. R., Jolley, D., de Klerk, N., Bastone, E. B., et al. (2004). Exposure to inorganic arsenic in soil increases urinary inorganic arsenic concentrations of residents living in old mining areas. Environmental Geochemistry and Health, 26(1), 27–36.

    Article  CAS  Google Scholar 

  • Holland, N., Bolognesi, C., Kirsch-Volders, M., Bonassi, S., Zeiger, E., et al. (2008). The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: The HUMN project perspective on current status and knowledge gaps. Mutation Research, 659(1–2), 93–108.

    Article  CAS  Google Scholar 

  • Holland, N., Fucic, A., Franco, D., Sram, R., & Kirsch-Volders, M. (2011). Micronuclei in neonates and children: Effects of environmental, genetic, demographic and disease variables. Mutagenesis, 26(1), 51–56.

    Article  CAS  Google Scholar 

  • Jasso-Pineda, Y., Espinosa-Reyes, G., González-Mille, D., Razo-Soto, I., Carrizales-Yañez, L., et al. (2007). An integrated health risk assessment approach to the study of mining sites contaminated with arsenic and lead. Integrated Environmental Assessment and Management, 3(3), 344–350.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., et al. (2007a). In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Chemosphere, 69(1), 69–78.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., et al. (2007b). Comparison of in vivo and in Vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere, 69(6), 961–966.

    Article  CAS  Google Scholar 

  • Jung, M. C. (2001). Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine, Korea. Applied Geochemistry, 16, 1369–1375.

    Article  CAS  Google Scholar 

  • Lanphear, B. P., Dietrich, K., Auinger, P., & Cox, C. (2000). Cognitive deficits associated with blood lead concentrations < 10 microg/dL in US children and adolescents. Public Health Reports, 115(6), 521–529.

    Article  CAS  Google Scholar 

  • Ljung, K., Otabbong, E., & Selinus, O. (2006). Natural and anthropogenic metal imputs to soils in urban Uppsala, Sweden. Environmental Geochemistry and Health, 28, 353–364.

    Article  CAS  Google Scholar 

  • Lu, Y., Yin, W., Huang, L., Zhang, G., & Zhao, Y. (2011). Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City. China. Environmental Geochemistry and Health, 33(2), 93–102.

    Article  CAS  Google Scholar 

  • Majer, B. J., Laky, B., Knasmüller, S., & Kassie, F. (2001). Use of the micronucleus assay with exfoliated epithelial cells as a biomarker for minotoring individuals at elevated risk of genetic damage and in chemoprevention trials. Mutation Research, 489, 147–172.

    Article  CAS  Google Scholar 

  • Migliore, L., Coppedè, F., Fenech, M., & Thomas, P. (2011). Association of micronucleus frequency with neurodegenerative diseases. Mutagenesis, 26(1), 85–92.

    Article  CAS  Google Scholar 

  • Mitelman, F. (2000). Recurrent chromosome aberrations in cancer. Mutation Research, 462(2–3), 247–253.

    Article  CAS  Google Scholar 

  • Moore, L. E., Smith, A. H., Hopenhayn-Rich, C., Biggs, M. L., Kalman, D. A., & Smith, M. T. (1997). Micronuclei in exfoliated bladder cells among individuals chronically exposed to arsenic in drinking water. Cancer Epidemiology, Biomarkers and Prevention, 6, 31–36.

    CAS  Google Scholar 

  • Moreno, M. E., Acosta-Saavedra, L. C., Meza-Figueroa, D., Vera, E., Cebrian, M. E., et al. (2010). Biomonitoring of metal in children living in a mine tailings zone in Southern Mexico: A pilot study. International Journal Hygiene Environmental Health, 213(4), 252–258.

    Article  CAS  Google Scholar 

  • Murgia, E., Maggini, V., Barale, R., & Rossi, A. M. (2007). Micronuclei, genetic polymorphisms and cardiovascular disease mortality in a nested case-control study in Italy. Mutation Research, 621(1–2), 113–118.

    Article  CAS  Google Scholar 

  • Neri, M., Bonassi, S., Knudsen, L. E., Sram, R. J., Holland, N., et al. (2006a). Children’s exposure to environmental pollutants and biomarkers of genetic damage. I. Overview and critical issues. Mutation Research, 612(1), 1–13.

    Article  CAS  Google Scholar 

  • Neri, M., Ceppi, M., Knudsen, L. E., Franco, D., Barale, R., et al. (2005). Baseline micronuclei frequency in children: Estimates from meta- and pooled analyses. Environmental Health Perspectives, 113(9), 1226–1229.

    Article  Google Scholar 

  • Neri, M., Ugolini, D., Bonassi, S., Fucic, A., Holland, N., et al. (2006b). Childrens’s exposure to environmental pollutants and biomarkers of genetic damage II. Results of a comprehensive literature search and mea-analysis. Mutation Research, 612, 14–39.

    Article  CAS  Google Scholar 

  • NOM-147-SEMARNAT/SSA1-2004. (2007). Norma Oficial Mexicana, que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. México, D.F.: Diario Oficial de la Federación, 2 de Marzo de 2007.

  • NOM-199-SSA1-2000. (2002). Norma Oficial Mexicana. Salud ambiental. Niveles de plomo en sangre y acciones como criterios para proteger la salud de la población expuesta no ocupacionalmente. México, D.F.: Diario Oficial de la Federación, 18 de Octubre de 2002.

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  • Plant, J., Jeffery, K., Gill, E., & Fage, C. (1975). The systematic determination of accuracy and precision in geochemical exploration data. Journal of Geochemical Exploration, 4, 467–486.

    Article  CAS  Google Scholar 

  • Razo, I., Carrizales, L., Castro-Larragoitia, J., Díaz-Barriga, F., & Monroy, M. (2004a). Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water, Air and Soil Pollution, 152, 129–152.

    Article  CAS  Google Scholar 

  • Razo, I., Téllez, J., Monroy, M., Carrizales, L., Díaz-Barriga, F., et al. (2004b). As and Pb bioaccesibility in polluted soils from a mining site under semiarid climate in Mexico. Tailings and Mine Waste’04 (pp. 173–184). Holland: Balkena Publ.

  • Rosin, M. P. (1992). The use of the micronucleus test on exfoliated cells to identify anti-clastogenic action in humans: A biological marker for the efficacy of chemopreventive agents. Mutation Research, 267(2), 265–276.

    Article  CAS  Google Scholar 

  • Rossner, P., Bavorova, H., Ocadlikova, D., Svandova, E., & Sram, R. J. (2002). Chromosomal aberrations in peripheral lymphocytes of children as biomarkers of environmental exposure and life style. Toxicology Letters, 134, 79–85.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30(2), 422–430.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • Sarto, F., Tomanin, R., Giacomelli, L., Iannini, G., & Cupiraggi, A. R. (1990). The micronucleus assay in human exfoliated cells of the nose and mouth: Application to occupational exposures to chromic acid and ethylene oxide. Mutation Research, 244(4), 345–351.

    CAS  Google Scholar 

  • Schmidt, C. (2006). Signs of Times. Biomarkers in Perspective. Environmental Health Perspectives, 114(12), A701–A705.

    Google Scholar 

  • Schwartz, J. (1994). Low-level lead exposure and children’s IQ: A meta-analysis and search for a threshold. Environmental Research, 65(1), 42–55.

    Article  CAS  Google Scholar 

  • Schwartz, J., & Otto, D. (1991). Lead and minor hearing impairment. Archives of Environmental Health, 46(5), 300–305.

    Article  CAS  Google Scholar 

  • Stich, H. F., Curtis, J. R., & Parida, B. B. (1982). Application of the micronucleus test to exfoliated cells of high cancer risk groups: Tobacco chewers. International Journal of Cancer, 30(5), 553–559.

    Article  CAS  Google Scholar 

  • Subramanian, K. S. (1987). Determination of lead in blood: Comparison of two GFAAS methods. At Spectroscopy, 8, 7–14.

    CAS  Google Scholar 

  • Tolbert, P. E., Shy, C. M., & Allen, J. W. (1992). Micronuclei and other nuclear anomalies in buccal smears: Methods development. Mutation Research, 271, 69–77.

    Article  CAS  Google Scholar 

  • Van de Wiele, T. R., Oomen, A. G., Wragg, J., Cave, M., Minekus, M., et al. (2007). Comparison of five in vitro digestion models to in vivo experimental results: Lead bioaccessibility in the human gastrointestinal tract. Journal of Environmental Science and Health, Part A. Toxic/Hazardous Substances andEnvironmental Engineering, 42(9), 1203–1211.

    Article  Google Scholar 

  • Wang, Z., Chai, L., Yang, Z., Wang, Y., & Wang, H. (2010). Identifying sources and assessing potential risk of heavy metals in soils from direct exposure to children in a mine-impacted city, Changsha, China. Journal of Environmental Quality, 39(5), 1616–1623.

    Article  CAS  Google Scholar 

  • Warner, M. L., Moore, L. E., Smith, M. T., Kalman, D. A., Fanning, E., et al. (1994). Increased micronuclei in exfoliated bladder cells of individuals who chronically ingest arsenic-contaminated water in Nevada. Cancer Epidemiology, Biomarkers and Prevention, 3(7), 583–590.

    CAS  Google Scholar 

  • Wild, C. P., & Kleinjans, J. (2003). Children and increased susceptibility to environmental carcinogens: Evidence or empathy? Cancer Epidemiology, Biomarkers and Prevention, 12, 1389–1394.

    CAS  Google Scholar 

  • Yáñez, L., García-Nieto, E., Rojas, E., Carrizales, L., Mejía, J., et al. (2003). DNA damage in blood cells from children exposed to arsenic and lead in a mining area. Environmental Research, 93, 231–240.

    Article  Google Scholar 

Download references

Acknowledgments

We thank to the Mexican Council for Science and Technology (CONACYT, project SEMARNAT 2002-C01-0362) and CEASSA, S.C. for financing this study. Sandra P. Gamiño thanks to CONACYT for PhD Fellowship (129796). We also thank to Fernando Diaz Barriga for his comments, to Fidel Martínez Gutiérrez and Leticia Carrizales for obtaining blood samples, to Fabiola Hentschel for bioaccessibility assays and to Edith Ramírez for their technical assist in MEC assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos G. Monroy-Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamiño-Gutiérrez, S.P., González-Pérez, C.I., Gonsebatt, M.E. et al. Arsenic and lead contamination in urban soils of Villa de la Paz (Mexico) affected by historical mine wastes and its effect on children’s health studied by micronucleated exfoliated cells assay. Environ Geochem Health 35, 37–51 (2013). https://doi.org/10.1007/s10653-012-9469-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-012-9469-8

Keywords

Navigation