Skip to main content

Advertisement

Log in

The chemistry and parent material of urban soils in Bristol (UK): implications for contaminated land assessment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

An earlier survey of topsoil from parks and allotment in the city of Bristol (UK) revealed the presence of relatively high levels of “pseudo-total” Cd, As, Cu, Pb and Zn, with Cd and As exceeding present UK soil guidelines. This follow-up work aimed at (1) estimating geochemical thresholds for these elements based on “near-total” soil, bedrock and sediment heavy metals and (2) determining the genetic relationship between soil and bedrock using rare earth elements (REEs or lanthanides) as tracers. “Near-total” concentration of 34 elements (Al, Ca, Fe, K, Mg, Na, As, Ba, Cd, Cr, Cu, Li, Mn, Ni, P, Pb, Sc, Ti, V, Zn, Y and the rare earth elements Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Yb) were obtained by ICP-MS and ICP-OES. The results show that the soil composition is largely controlled by the soil parent material, though extreme outliers are indicative of contamination at a few sites of parkland and allotments. Cumulative frequency plots show the presence of different data sets for which separate “background” values should be determined. The REE data provide evidence that weathering of the underlying sandstone was a determinant factor leading to the relatively high heavy metal enrichment found in soil samples and sediments. Reference to UK soil guidelines to decide on possible remediation measures could be very misleading due to the natural high background levels of some elements in the underlying bedrock. Before defining land as “contaminated”, a thorough geochemical investigation is required at local scale in order to produce a more realistic and correct environmental assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrahams, P. W., & Thornton, I. (1987). Distribution and extent of land contaminated with arsenic and associated metals in the mining regions of southwest England. Transactions of the Institution of Mining and Metallurgy Section B, 96, 1–8.

    Google Scholar 

  • Alloway, B. J. (1990). Heavy metals in soils. Glasgow and London: Blackie and Sons Ltd.

    Google Scholar 

  • Anders, E., & Ebihara, M. (1982). Solar-system abundances of the elements. Geochimica et Cosmochimica Acta, 46, 2363–2380.

    Article  CAS  Google Scholar 

  • Barraclough, D. (2007). UK soil and herbage pollutant survey. UKSHS report no. 1. Introduction and summary. Bristol: Environment Agency.

    Google Scholar 

  • Barton, C. M., Strange, P. J., Royse, K. R., & Ferrant, A. R. (2002). Geology of the Bristol District: A brief explanation of the geological map Sheet 264 Bristol. Keyworth, Nottingham: British Geological Survey.

    Google Scholar 

  • Black, H. I. J., Garnett, J. S., Ainsworth, G., Coward, P. A., Creamer, R., Ellwood, S., et al. (2002). MASQ: Monitoring and assessing soil quality in Great Britain. Countryside survey module 6: Soils and pollution. Bristol: Environment Agency, R & D Technical Report E1-063/TR.

    Google Scholar 

  • Bristol City Council. (2006). Bristol parks allotment strategy (draft) 2007–2012. Bristol: Bristol Parks, Department of Culture and Leisure, Bristol City Council.

    Google Scholar 

  • Cave, Wragg, J., Palumbo, B., & Klinck, B. A. (2003). Measurement of the bioaccessibility of arsenic in UK soils. R&D technical report P5-062/TR02. Bristol: Environment Agency.

    Google Scholar 

  • Davies, B. E., & Ballinger, R. C. (1990). Heavy metals in soils in north Somerset, England, with special reference to contamination from base metal mining in the Mendips. Environmental Geochemistry and Health, 12, 291–300.

    Article  Google Scholar 

  • DEFRA. (2008). Guidance on the legal definition of contaminated land. Department for Environment Food and Rural Affairs, July 2008.

  • DEFRA & Environment Agency. (2002a). CRL10 SGV 1–10: Soil Guideline Value Reports for arsenic, cadmium, chromium, nickel, lead, mercury and selenium. Bristol: Environment Agency.

    Google Scholar 

  • DEFRA & Environment Agency. (2002b). CLR11: Model procedures for the management of land contamination. Bristol: Environment Agency.

    Google Scholar 

  • Environment Agency. (2002). Industry in Avonmouth. A public guide to pollution management. Exeter: Environment Agency.

    Google Scholar 

  • Environment Agency. (2009a). Soil guideline values for mercury in soil. Science report SC050021/mercury SGV. Bristol: Environment Agency.

    Google Scholar 

  • Environment Agency. (2009b). Soil guideline values for nickel in soil. Science report SC050021/Nickel SGV. Bristol: Environment Agency.

    Google Scholar 

  • Environment Agency. (2009c). Soil guideline values for selenium in soil. Science report SC050021/Selenium SGV. Bristol: Environment Agency.

    Google Scholar 

  • Environment Agency. (2009d). Soil guideline values for inorganic arsenic in soil. Science report SC050021/Arsenic SGV. Bristol: Environment Agency.

    Google Scholar 

  • Environment Agency. (2009e). Soil guideline values for cadmium in soil. Science report SC050021/Cadmium SGV. Bristol: Environment Agency.

    Google Scholar 

  • Fordyce, F. M., Brown, S. E., Ander, E. L., Rawlins, B. G., O’Donnell, K. E., Lister, T. R., et al. (2005). GSUE (Geochemical Surveys of Urban Environments): Urban geochemical mapping in Great Britain. Geochemistry: Exploration, Environment, Analysis, 5, 325–336.

    Article  CAS  Google Scholar 

  • FOREGS (Forum of the European Geological Surveys). (2005). Geochemical Atlas of Europe. Part 1—Background information, methodology, and maps. Espoo: Geological Survey of Finland.

    Google Scholar 

  • FOREGS (Forum of the European Geological Surveys). (2006). Geochemical Atlas of Europe. Part 2—Interpretation of geochemical maps, additional tables, figures, maps and related publications. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Fuge, R., Glover, S. P., Pearce, N. J. G., & Perkins, W. T. (1991). Some observations on heavy metal concentrations in soils of the Mendip region of north Somerset. Environmental Geochemistry and Health, 13(4), 193–196.

    Article  CAS  Google Scholar 

  • Giusti, L. (2011). Heavy metals in urban soils of Bristol (UK). Initial screening for contaminated land. Journal of Soils and Sediments, 11(8), 1385–1398.

    Article  CAS  Google Scholar 

  • Green, G. W. (1992). British regional geology: Bristol and Gloucester region (3rd ed.). London: HMSO.

    Google Scholar 

  • Haskin, L. A., Wildeman, T. R., Frey, F. A., Collins, K. A., Keedy, C. R., & Haskin, M. A. (1966). Rare earths in sediments. Journal of Geophysical Research, 71, 6091–6105.

    Article  CAS  Google Scholar 

  • Henderson, P. (1984). Rare earth element geochemistry. Amsterdam: Elsevier.

    Google Scholar 

  • Horckmans, L., Swennen, R., Deckers, J., & Maquil, R. (2005). Local background concentrations of trace elements in soils: A case study in the Grand Duchy of Luxembourg. Catena, 59, 279–304.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1984). Trace elements in soils and plant. Boca Raton: CRC Press.

    Google Scholar 

  • Kellaway, G. A., & Welch, F. B. A. (1993). Geology of the Bristol District: Memoir for 1:63360 geological special sheet (England and Wales). Keyworth, Nottingham: British Geological Survey.

    Google Scholar 

  • Kurtz, A. C., Derry, L. A., Chadwick, O. A., & Alfano, M. J. (2000). Refractory element mobility in volcanic soils. Geology, 28, 683–686.

    Article  CAS  Google Scholar 

  • Laveuf, C., & Cornu, S. (2009). A review of the potentiality of rare earth elements to trace pedogenetic processes. Geoderma, 154, 1–12.

    Article  CAS  Google Scholar 

  • Levinson, A. A. (1974). Introduction to exploration geochemistry. Wilmette, IL: Applied Publishing.

    Google Scholar 

  • Lin, C., He, M., Zhou, Y., Hu, L., Guo, W., Quan, X., et al. (2007). Mercury contamination and dynamics in the sediment of the second Songhua River, China. Soil and Sediment Contamination, 16, 397–411.

    Article  CAS  Google Scholar 

  • Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth-Science Reviews, 32, 235–283.

    Article  CAS  Google Scholar 

  • Ma, Y.-J., Huo, R.-K., & Liu, C-Q. (2002). Speciation and fractionation of rare earth elements in a lateritic profile from southern China: Identification of the carriers of Ce anomalies. Proceedings of the goldschmidt conference, Davos, Switzerland, 18th–23rd August 2002.

  • McFarlane, M. J., Bowden, D. J., & Giusti, L. (1994). The behaviour of chromium in weathering profiles associated with the African surface in parts of Malawi. In D. A. Robinson & R. B. G. Williams (Eds.), Rock weathering and landform evolution. Chichester: Wiley.

    Google Scholar 

  • McGrath, S. P., & Cunliffe, C. H. (1985). A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludges. Journal of the Science of Food and Agriculture, 36, 794–798.

    Article  CAS  Google Scholar 

  • McGrath, S. P., & Loveland, P. J. (1992). The soil geochemical Atlas of England and Wales. London: Chapman and Hall.

    Google Scholar 

  • Pettijohn, F. J., Potter, P. E., & Siever, R. (1987). Sand and sandstones. New York: Springer.

    Book  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: Critical comparison of methods of determination. Science of the Total Environment, 346, 1–16.

    Article  CAS  Google Scholar 

  • Reimann, C., Matschullat, J., Birke, M., & Salminen, R. (2009). Arsenic distribution in the environment: The effect of scale. Applied Geochemistry, 24, 1147–1167.

    Article  CAS  Google Scholar 

  • Rieuwerts, J. S., Searle, P., & Buck, R. (2006). Bioaccessible arsenic in the home environment in southwest England. Science of the Total Environment, 371, 89–98.

    Article  CAS  Google Scholar 

  • Roussel, H., Waterlot, C., Pelfrêne, A., Pruvot, C., Mazzuca, M., & Douay, F. (2010). Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters. Archives of Environmental Contamination and Toxicology, 58(4), 945–954.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30(2), 422–430.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of elements in some major units of the earth crust. Geological Society of America Bulletin, 72, 175–191.

    Article  CAS  Google Scholar 

  • Zhang, H. B., Luo, Y. M., Wong, M. H., Zhao, Q. G., & Zhang, G. L. (2007). Defining the geochemical baseline: A case of Hong Kong soils. Environmental Geology, 52, 843–851.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Emma Waters for map production, and Shirong Tang and Carmen Lobo for their assistance with the analytical work. Stephen Clamping (allotments manager at Bristol City Council), the parks managers and allotment holders are gratefully acknowledged for allowing access to allotments and parks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Giusti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10653_2012_9468_MOESM1_ESM.tif

Online Resource 1 Simplified bedrock geological map of the Bristol district, showing the rock sampling locations. BC = Blaise Castle; LW = Lee Woods; CB = Clifton Bridge; AC = Aston Court Estate; SM = Snuff Mills; TH = Troopers Hill; H = Hanham. (TIFF 5223 kb)

Online Resource 2 (DOC 35 kb)

Online Resource 3 (DOC 34 kb)

10653_2012_9468_MOESM4_ESM.doc

Online Resource 4 Box-plots of near-total composition of soil (n = 84), limestone (n = 6), sandstone (n = 7), and sediments (n = 15) from the Bristol district, showing the median, maximum, minimum, 25 and 75 percentiles of Al2O3, CaO, Fe2O3, K2O, MgO, Na2O, Ti, Ba, P, Mn, V, Li, As, Cd, Cr, Cu, Ni, Pb, Zn, and Y. The number of samples is shown in brackets on the X axis. Parks and green areas: AC = Ashton Court; BC = Blaise Castle Estate; DD = Durdham Downs; RC = Ridgeway and Coombe Brook Valley; TH = Troopers Hill. Allotment sites: AD = Atwood Drive; PK = Packers; WF = Whitefield; TF = The Farm. (DOC 117 kb)

Online Resource 5 (DOC 331 kb)

10653_2012_9468_MOESM6_ESM.doc

Online Resource 6 Median (±sd) of (a) LREE and (b) HREE concentration in soils, rocks and sediments from Bristol. Parks and green areas: AC = Ashton Court; BC = Blaise Castle Estate; DD = Durdham Downs; TH = Troopers Hill; RC = Ridgeway and Coombe Brook Valley. Allotment sites: PK = Packers; AD = Atwood Drive; WF = Whitefield; TF = The Farm. Limestone = LS; Sandstone = SS; Sediments = SSS. (DOC 71 kb)

10653_2012_9468_MOESM7_ESM.doc

Online Resource 7 Scatter-plot of correlation of Al2O3 vs. Li for (a) allotments and parks shown separately, (b) all 84 samples, (c) soils on sandstone bedrock, (d) soils on limestone bedrock (Ashton Court, Blaise Castle, Durdham Downs), and (e) bedrock (6 limestone and 8 sandstone samples). The empty square shows a sandstone outlier from Troopers Hill. (DOC 181 kb)

10653_2012_9468_MOESM8_ESM.doc

Online Resource 8 Soil/bedrock enrichment ratios for (a) Ashton Court, (b) Blaise Castle, (c) Troopers Hill and (d) Atwood Drive allotments. Figures (e) and (f) show the soil/bedrock enrichment ratios for Ashton Court and Blaise Castle assuming that sandstone was the parent material of the soils in these areas. (DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giusti, L. The chemistry and parent material of urban soils in Bristol (UK): implications for contaminated land assessment. Environ Geochem Health 35, 53–67 (2013). https://doi.org/10.1007/s10653-012-9468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-012-9468-9

Keywords

Navigation