Environmental Geochemistry and Health

, Volume 34, Issue 4, pp 417–431 | Cite as

Daily intake of selenium and concentrations in blood of residents of Riyadh City, Saudi Arabia

  • Abdulaziz M. Al-Othman
  • Zeid A. Al-Othman
  • Gaber E. El-Desoky
  • Mourad A. M. Aboul-Soud
  • Mohamed A. Habila
  • John P. Giesy
Article

Abstract

Concentrations of selenium (Se) in food from local markets of Riyadh, Kingdom of Saudi Arabia (KSA) were measured and daily intake calculated based on information from a questionnaire of foods eaten by healthy Saudis. The daily intake of Se was then compared to concentrations of Se in blood serum. Primary sources of Se in the diet of Saudis were as follows: meat and meat products (31%), egg (20.4%), cereals and cereal products (16%), legumes (8.7%), fruits (6.8%), milk and dairy products (2.0%), beverages (2%), sweets (1.8%), pickles (0.2%), and oil (0.02%). Daily intake of Se, estimated to be 93 μg Se/person/day, was slightly greater than that calculated from the Food and Agriculture Organization (FAO) food balance sheet for KSA, which was approximately 90 μg Se/person/day. The daily intake of Se by Saudis in Riyadh was greater than that of Australians or Dutch but less that of Canadians and Americans. There was a statistically significant correlation (R = +0.38, P < 0.05) between daily intake of Se and concentrations of Se in blood serum of Saudis in Riyadh. The mean concentration of Se in serum was 1.0 × 102 ± 30.5 μg Se/l. Taken together, the results suggest that the average Se intake and Se serum concentrations are within the known limits and recommendations, making it unlikely that Saudis are on average at risk of deficiency or toxicity.

Keywords

Micronutrients Deficiency Blood serum ICP-AES Selenium Toxicity Diet Food Saudi Arabia 

Notes

Acknowledgments

The research was financially supported by the Deanship of Scientific Research at King Saud University through research group project No RGP-VPP-130.

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR). (2003). Toxicological profile for selenium. US Dept Health and Human Serv. http://www.atsdr.cdc.gov.
  2. Amodio-Cocchieri, R., Arneses, A., Roncioni, A., & Vestri, G. (1995). Evaluation of the selenium content of the traditional Italian diet. International Journal of Food Sciences and Nutrition, 46, 149.CrossRefGoogle Scholar
  3. Barclay, M. N. I., MacPherson, A., & Dixon, J. (1995). Selenium content of a range of U.K. foods. Journal of Food Composition and Analysis, 8, 307–318.CrossRefGoogle Scholar
  4. Batáriová, A., Cerna, M., Speváckova, V., Cejchanová, M., Benes, B., & Smíd, J. (2005). Whole blood selenium content in healthy adults in the Czech Republic. Science of the Total Environment, 338, 183–188.CrossRefGoogle Scholar
  5. Becker, W., & Kumpulainen, J. (1991). Contents of essential and toxic mineral elements in Swedish Market-basket diets in 1987. Brazilian Journal of Nutrition, 66, 151–160.CrossRefGoogle Scholar
  6. Bratakos, M. S., & Ioannou, P. V. (1989). The regional distribution of selenium in Greek cereals. Science of the Total Environment, 84, 237–247.CrossRefGoogle Scholar
  7. Brown, K. M., & Arthur, J. R. (2001). Selenium, selenoproteins and human health: a review. Public Health Nutrition, 4, 593–599.CrossRefGoogle Scholar
  8. Bukhari, I. H., Hassan, M. N., Haleem, A., & Maqbool, M. B. (2005). Role of metals (Cadmium and lead) in patients of hypertension and their relationship with ischemic heart disease. Research Journal of Agriculture and Biological Sciences, 1, 190–194.Google Scholar
  9. Cepelak, I., & Dodig, S. (2003). Glutathione and oxidative stress. Biochemical Medicine, 13, 93–100.Google Scholar
  10. Chen, C., Yu, H., Zhao, J., Li, B., Qu, L., Liu, S., et al. (2006). The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environmental Health Perspective, 114, 297–301.CrossRefGoogle Scholar
  11. Choi, Y., Kim, J., Lee, H., Kim, C., Hwang, K., Park, H.-K., et al. (2009). Selenium content in representative Korean foods. Journal of Food Composition and Analysis, 22, 117–122.CrossRefGoogle Scholar
  12. Chukwujindu Iwegbue, M. A., Nwozo, S. O., Ossai, E. K., & Nwajei, G. E. (2008). Heavy metal composition of some imported canned fruit drinks in Nigeria. American Journal of Food Technology, 3, 220–223.CrossRefGoogle Scholar
  13. Czuczejko, J., Zachara, B. A., Stauback-Tpoczwska, E., Halota, W., & Kedziora, J. (2003). Selenium, glutathione and glutathione peroxidases in blood of patients with chronic liver diseases. Acta Biochimica Polonica, 50, 1147–1154.Google Scholar
  14. Da Cunha, S., Manes Albanesi Filho, F., Senra Antelo, D., & Miranda de Souza, M. (2003). Serum sample levels of selenium and copper in Rio de Janeiro city. Science of the Total Environment, 301, 51–54.CrossRefGoogle Scholar
  15. Department of Health and Human Services (DHHS). (2002). Dietary intake of macronutrients, micronutrients and other dietary constituents: United States, 1988–1994. In Vital and Health Statistics (p. 104), Series 11, Number 245. Maryland: DHHS Publication.Google Scholar
  16. Díaz-Romero, C. D., López-Blanco, F. L., Henríquez-Sánchez, P. H., Rodríguez-Rodríguez, E., & Serra-Majem, L. S. (2001). Serum selenium concentration in a representative sample of the Canadian population. Science of the Total Environment, 269, 65–73.CrossRefGoogle Scholar
  17. Dietary Reference Intakes (DRI) (2000). Applications in dietary assessments. National Research Council. Washington: National Academy Press. pp. 284–319.Google Scholar
  18. Dodig, S., & Cepelak, I. (2004). The facts and controverses about selenium. Acta Pharmaceutica, 54, 261–276.Google Scholar
  19. Dumont, E., Vanhaecke, F., & Cornelis, R. (2006). Selenium speciation from food source to metabolites: a critical review. Analytical and Bioanalytical Chemistry, 385, 1304–1323.CrossRefGoogle Scholar
  20. Edem, C. A., Grace, I., Vincent, O., Rebbeca, E., & Matilda, O. (2009). A comparative evaluation of heavy metals in commercial wheat flours sold in Calabar-Nigeria. Pakistan Journal of Nutrition, 8, 585–587.CrossRefGoogle Scholar
  21. Elinder, C. G., Friberg, L., Nordberg, G. F., Kjellström, T., & Oberdörster, G. (1994). Biological monitoring of metals. Geneva: World Health Organization.Google Scholar
  22. European Commission, Health and Consumer Protection Directorate-general, Scientific Committee on Food. (2000). Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Selenium, Bruxelles, CF/CS/NUT/UPPLEV/25 Final. November 28.Google Scholar
  23. Food Standards Agency (FSA). (2008). Revised review of selenium. EVM/99/17. Revised August 2002. Retrieved 2008–12. http://www.food.gov.uk/multimedia/pdfs/selenium.pdf.
  24. Food Standards Australia and New Zealand (FSANZ). (2003). The 20th Australian Total Diet Survey.Google Scholar
  25. Gibson, R. S. (1990). Principles of nutritional assessment. New York: Oxford University Press.Google Scholar
  26. Goldhaber, S. B. (2003). Trace element risk assessment: Essentiality versus toxicity. Regulatory Toxicology and Pharmacology, 38, 232–242.CrossRefGoogle Scholar
  27. Gundacker, C., Komarnicki, G., Zödl, B., Forster, C., Schuster, E., & Wittmann, K. (2006). Whole blood mercury and selenium concentrations in a selected Austrian population: Does gender matter? Science of the Total Environment, 372, 76–86.CrossRefGoogle Scholar
  28. Hageddorm, B. (2008). Acid digestion of waters for total recoverable metals. Environmental Protection Agency (EPA) 3005.Google Scholar
  29. Hatano, S., Nishi, Y., & Usiu, T. (1984). Plasma selenium concentration in healthy Japanese children and adults determined by flameless atomic absorption spectrophotometry. Journal of Pediatric Gastroenterology and Nutrition, 3, 426–431.CrossRefGoogle Scholar
  30. Hathcock, J. N., (1997). Vitamins and minerals: efficacy and safety. The American Journal of Clinical Nutrition, 66, 427–437.Google Scholar
  31. Health Canada (1992). Guidelines for Canadian drinking water quality: Supporting document–selenium, April, 1979. Updated December 1992. Available online at http://www.hc-sc.gc.ca/ewhsemt/pubs/water-eau/doc_sup-appui/selenium/index_e.html.
  32. Health Canada. (2004). Federal contaminated site risk assessment in Canada. Part II: Health Canada toxicological reference values. September, 2004.Google Scholar
  33. Health Canada. (2006). Dietary Reference Intake Tables. ISBN: 0-662-41134-X. http://www.hc-sc.gc.ca/fn-an/nutrition/reference/table/index-eng.php.
  34. Hirai, K., Noda, K., & Danbara, H. (1996). Selenium intake based on representative diets in Japan, 1957 to 1989. Nutrition Research, 16, 1471–1477.CrossRefGoogle Scholar
  35. Holland, B., Welch, A. A., Unwin, I. D., Buss, D. H., Paul, A. A., & Southgate, D. A. T. (1991). The composition of foods. Cambridge: Royal Society of Chemistry/Ministry of Agriculture, Fisheries and Food.Google Scholar
  36. Hughes, K., Chua, L. H., & Ong, C. N. (1998). Serum selenium in the general population of Singapore, 1993–1995. Annals Academy of Medicine Singapore, 27, 520–523.Google Scholar
  37. Hussein, L., & Bruggeman, J. (1999). Selenium analysis of selected Egyptian foods and estimated daily intakes among a population group. Food Chemistry, 65, 527–532.CrossRefGoogle Scholar
  38. IOM. (1998). Dietary reference intakes: Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline (p. 284). Washington: National Academy Press.Google Scholar
  39. Jameson, R. R., & Diamond, A. M. (2004). A regulatory role for Sec tRNASerSec in selenoprotein synthesis. RNA, 10, 1142–1152.CrossRefGoogle Scholar
  40. Kápolina, E., Shah, M., Caruso, J. A., & Fedor, P. (2007). Selenium speciation studies in Se-enriched chives (Allium schoenoprasum) by HPLC-ICP-MS. Food Chemistry, 101, 1398–1406.CrossRefGoogle Scholar
  41. Klapec, T., Mandic, M. L., Grgic, J., Primorac, L. J., Perl, A., & Krstanovic, V. (2004). Selenium in selected foods grown or purchased in eastern Croatia. Food Chemistry, 8, 445–452.CrossRefGoogle Scholar
  42. Ko, W., Guo, C., Yeh, M., Lin, L., & Hsu, G. (2005). Blood micronutrient, oxidative stress, and viral load in patients with chronic hepatitis C. World Journal of Gastroenterology, 11, 4697–4702.Google Scholar
  43. Lawrence, G. S., & Chapman, P. M. (2007). Human health risks of selenium-contaminated fish: A case study for risk assessment of essential elements. Human and Ecological Risk Assessment, 13, 1192–1213.CrossRefGoogle Scholar
  44. Lin, C., Huang, J., Tsai, L., & Huang, Y. (2006). Selenium, iron, copper, and zinc levels and copper-to-zinc ratios in serum of patients at different stages of viral hepatic diseases. Biological Trace Element Research, 109, 15–23.CrossRefGoogle Scholar
  45. Luty-Frackiewicz, A., Jheton, Z., & Januszewska, L. (2002). Effect of smoking and alcohol consumption on the serum selenium level of lower Silesian population. Science of the Total Environment, 285, 89–95.CrossRefGoogle Scholar
  46. Marro, N. (1996). The 1994 Australian market basket survey. Canberra: Australia New Zealand Food Authority.Google Scholar
  47. McNaughton, S. A., & Marks, G. C. (2002). Selenium content of Australian foods: A review of literature values. Journal of Food Composition and Analysis, 15, 169–182.CrossRefGoogle Scholar
  48. NAS (United States National Academies of Science). (2000). Dietary reference intakes for vitamin C, vitamin E, selenium and carotenoids. Institute of Medicine. http://books.nap.edu/openbook.php?record_id=9810&page=284.
  49. Navarro, M., Lopez, H., Ruiz, M. L., González, S., Perez, V., & Lopez, M. C. (1995). Determination of selenium in serum by hydride generation atomic absorption spectrometry for calculation of daily dietary intake. Science of the Total Environment, 175, 245–253.CrossRefGoogle Scholar
  50. New Zealand Institute for Crop and Food Research Limited. (2000). Food files 2000: New Zealand food composition database. Christchurch: Ministry of Health.Google Scholar
  51. Pappa, E. C., Pappas, A. C., & Surai, P. F. (2006). Selenium content in selected foods from the Greek market and estimation of the daily intake. Science of the Total Environment, 372, 100–108.CrossRefGoogle Scholar
  52. Raghunath, R., Triphathi, R. M., Mahapatra, S., & Sadasivan, S. (2002). Selenium levels in biological matrices in adult population of Mumbai. Science of the Total Environment, 285, 21–27.CrossRefGoogle Scholar
  53. Ramesh, A., Devi, B. A., Hasewaga, H., Maki, T., & Ueda, K. (2007). Nanometer-sized alumina coated with chromotropic acid as solid phase metal extractant from environmental samples and determination by inductively coupled plasma atomic emission spectrometry. Microchemical Journal, 86, 124–130.CrossRefGoogle Scholar
  54. Safaralizadeh, R., Kardar, G. A., Pourpak, Z., Moin, M., Zare, A., & Teimourian, S. (2005). Serum concentration of selenium in healthy individuals living in Tehran. Nutrition Journal, 4, 1–4.CrossRefGoogle Scholar
  55. Salama, K. A., & Radwan, M. A. (2005). Heavy metals (Cd, Pb) and trace elements (Cu, Zn) contents in some foodstuffs from the Egyptian market. Emirates Journal of Agricultural Sciences, 17, 34–42.Google Scholar
  56. Shell Canada Energy, Intrinsik Environmental Sciences Inc., Jacques Whitford Axys Ltd. (1999). Potential human health impacts related to selenium in fish from the North Saskatchewan River. Calgary, Alberta, Canada, March. http://www-static.shell.com/static/can-en/downloads/aboutshell/aosp/sirs_qa3_att_mar09.pdf.
  57. Sirichakwal, P. P., Puwastien, P., Polngam, J., & Kongkachuichai, R. (2005). Selenium content of Thai foods. Journal of Food Composition and Analysis, 18, 47–59.CrossRefGoogle Scholar
  58. Stranges, S., Marshall, J. R., Natarajan, R., Donahue, R. P., Trevisan, M., Cappuccio, F. P., et al. (2007). Effects of long-term selenium supplementation on the incidence of type 2 diabetes. A randomized trial. Annals of Internal Medicine, 147, 217–223.Google Scholar
  59. Tülay, O., Serife, T., Vedat, Y., Senol, K., & Didem, A. (2009). Determination of lead and cadmium in food samples by the coprecipitation method. Food Chemistry, 113, 1314–1317.CrossRefGoogle Scholar
  60. United States Department of Agriculture (1999). USDA Nutrient Database for Standard Reference, Release 13. Nutrient Data Laboratory Homepage on the World Wide Web. http://www.nal.usda.gov/fnic/foodcomp/Data/SR13/sr.html.
  61. U.S. EPA. (1991). Ambient Water Quality Criteria for selenium.Google Scholar
  62. U.S. EPA. (1995). Ambient Water Quality Criteria for selenium.Google Scholar
  63. Uden, P. C., Boakye, H. T., Kahakachchi, C., & Tyson, J. F. (2004). Selective detection and identification of Se containing compounds review and recent developments. Journal of Chromatography. A, 1050, 85.CrossRefGoogle Scholar
  64. Ursini, F., Heim, S., Kiess, M., Maiorino, M., Roveri, A., Wissing, J., et al. (1999). Dual function of the selenoprotein PHGPx during sperm maturation. Science, 285, 1393–1396.CrossRefGoogle Scholar
  65. Van Cauwenbergh, R. V., Robberectht, H., & Va Vlaslaer, V. (2004). Comparison of the serum selenium content of healthy adults living in the Antwerp region (Belgium) with recent literature data. Journal of Trace Elements in Medicine and Biology, 18, 99–112.CrossRefGoogle Scholar
  66. van de Wiel, H. J. (2003). Determination of elements by ICP-AES and ICP-MS. Bilthoven: National Institute of Public Health and the Environment (RIVM).Google Scholar
  67. van der Torre, H. W., van Dokkum, W., Schaafsma, G., Wedel, M., & Ockhuizen, T. (1991). Effect of various levels of selenium in wheat and meat on blood Se status indices and on selenium balance in Dutch men. British Journal of Nutrition, 65, 69–80.CrossRefGoogle Scholar
  68. van Dokkum, W., De Vo, R. H., Muy, Th., & Wesstra, J. A. (1989). Minerals and trace elements in total diets in the Netherlands. British Journal of Nutrition, 61, 7–15.CrossRefGoogle Scholar
  69. Ventura, M. G., Stibilj, V., Freitas, M. C., & Pacheco, A. M. G. (2009). Determination of ultratrace levels of selenium in fruit and vegetable samples grown and consumed in Portugal. Food Chemistry, 115, 200–206.CrossRefGoogle Scholar
  70. Welz, B., & Melcher, M. (1985). Decomposition of marine biological tissues for determination of arsenic, selenium and mercury using hydride-generation and cold-vapor atomic absorption spectrometries. Analytical Chemistry, 57, 427–431.CrossRefGoogle Scholar
  71. Yang, G., Zhou, R., Yin, S., Gu, L., Yan, B., Liu, Y., Liu, Y., & Li, X. (1989). Studies of safe maximal daily dietary selenium intake in a seleniferous area in China. I. Selenium intake and tissue selenium levels of the inhabitants. Journal of Trace Elements and Elecrolytes in Health and Disease, 3, 77–87.Google Scholar
  72. Zhang, Z. W., Shimbo, S., Qu, J. B., Watanabe, T., Nakatsuka, H., Matsuda-Inoguchi, N., et al. (2001). Biological Trace Elements Research, 80, 125–138.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Abdulaziz M. Al-Othman
    • 1
  • Zeid A. Al-Othman
    • 2
  • Gaber E. El-Desoky
    • 2
    • 3
  • Mourad A. M. Aboul-Soud
    • 2
    • 3
    • 7
  • Mohamed A. Habila
    • 2
  • John P. Giesy
    • 4
    • 5
    • 6
    • 7
    • 8
  1. 1.Department of Community Health SciencesCollege of Applied Medical Science, King Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Department of ChemistryCollege of Science, King Saud UniversityRiyadhKingdom of Saudi Arabia
  3. 3.Biochemistry Department, Faculty of AgricultureCairo UniversityGizaEgypt
  4. 4.Department of Veterinary Biomedical Sciences and Toxicology CentreUniversity of SaskatchewanSaskatoonCanada
  5. 5.Department of Zoology, and Center for Integrative ToxicologyMichigan State UniversityEast LansingUSA
  6. 6.School of Biological SciencesUniversity of Hong KongHong Kong, SARChina
  7. 7.Zoology DepartmentCollege of Science, King Saud UniversityRiyadhKingdom of Saudi Arabia
  8. 8.Department of Biology and Chemistry and State Key Laboratory in Marine PollutionCity University of Hong KongKowloon, Hong Kong, SARChina

Personalised recommendations