Environmental Geochemistry and Health

, Volume 34, Issue 2, pp 251–262 | Cite as

Mobilization of arsenic and other trace elements of health concern in groundwater from the Salí River Basin, Tucumán Province, Argentina

  • Hugo B. Nicolli
  • Jorge W. García
  • Carlos M. Falcón
  • Pauline L. Smedley
Original paper

Abstract

The Salí River Basin in north-west Argentina (7,000 km2) is composed of a sequence of Tertiary and Quaternary loess deposits, which have been substantially reworked by fluvial and aeolian processes. As with other areas of the Chaco-Pampean Plain, groundwater in the basin suffers a range of chemical quality problems, including arsenic (concentrations in the range of 12.2–1,660 μg L−1), fluoride (50–8,740 μg L−1), boron (34.0–9,550 μg L−1), vanadium (30.7–300 μg L−1) and uranium (0.03–125 μg L−1). Shallow groundwater (depths up to 15 m) has particularly high concentrations of these elements. Exceedances above WHO (2011) guideline values are 100% for As, 35% for B, 21% for U and 17% for F. Concentrations in deep (>200 m) and artesian groundwater in the basin are also often high, though less extreme than at shallow depths. The waters are oxidizing, with often high bicarbonate concentrations (50.0–1,260 mg L−1) and pH (6.28–9.24). The ultimate sources of these trace elements are the volcanic components of the loess deposits, although sorption reactions involving secondary Al and Fe oxides also regulate the distribution and mobility of trace elements in the aquifers. In addition, concentrations of chromium lie in range of 79.4–232 μg L−1 in shallow groundwater, 129–250 μg L−1 in deep groundwater and 110–218 μg L−1 in artesian groundwater. All exceed the WHO guideline value of 50 μg L−1. Their origin is likely to be predominantly geogenic, present as chromate in the ambient oxic and alkaline aquifer conditions.

Keywords

Groundwater geochemistry Trace-element water quality Arsenic Loess source Chaco-Pampean Plain 

References

  1. Astolfi, E., Besuschio, S. C., García, J. C., Guerra, C., & Maccagno, A. (1982). Hidroarsenicismo Crónico Regional Endémico (p. 144). Buenos Aires, Argentina: Edit. Coop. General Belgrano.Google Scholar
  2. Astolfi, E. A. N., Maccagno, A., García Fernández, J. C., Vaccaro, R., & Stimola, R. (1981). Relation between arsenic in drinking water and skin cancer. Biological Trace Element Research, 3, 133–143.CrossRefGoogle Scholar
  3. Ayerza, A. (1917a). Arsenicismo regional endémico (keratodermia y melanodermia combinadas). Bol. Acad. Medicina 23 (pp. 11–24). Buenos Aires, Argentina.Google Scholar
  4. Ayerza, A. (1917b). Arsenicismo regional endémico (keratodermia y melanodermia combinadas) (continuación). Bol. Acad. Medicina 23 (pp. 41–55). Buenos Aires, Argentina.Google Scholar
  5. Ayerza, A. (1918). Arsenicismo regional endémico (keratodermia y melanodermia combinadas). Bol. Acad. Nac. Medicina I (pp. 11–41). Buenos Aires, Argentina.Google Scholar
  6. Bates, M. N., Rey, O. A., Biggs, M. L., Hoppenhayn, C., Moore, L. E., Kalman, D., et al. (2004). Case–control study of bladder cancer and exposure to arsenic in Argentina. American Journal of Epidemiology, 159, 381–389.CrossRefGoogle Scholar
  7. Besuschio, S. C., Desanzo, A. C., Pérez, A., & Croci, M. (1980). Epidemiological associations between arsenic and cancer in Argentina. Biological Trace Element Research, 2, 41–55.CrossRefGoogle Scholar
  8. Bhattacharya, P., Claesson, M., Bundschuh, J., Sracek, O., Fagerberg, J., Jacks, G., et al. (2006). Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment, 358, 97–120.CrossRefGoogle Scholar
  9. Bundschuh, J., Farias, B., Martin, R., Storniolo, A., Bahattacharya, P., Cortes, J., et al. (2004). Groundwater arsenic in the Chaco-Pampean Plain, Argentina: case-study from Robles County, Santiago del Estero Province. Applied Geochemistry, 19(2), 231–243.CrossRefGoogle Scholar
  10. Bundschuh, J., García, M. E., & Bhattacharya, P. (2006). Arsenic in groundwater of Latin America—a challenge of the 21st century. Geological Society of America Annual Meeting, Philadelphia, 22–25 Oct. 2006, Geological Society of America Abstracts with Programs, 38:7 (320 pp.).Google Scholar
  11. Bundschuh, J., Perez Carrera, A., & Litter, M. (Eds.). (2008). Distribución del arsénico en las regiones Ibérica e Iberoamericana (223 pp.). Buenos Aires, Argentina: Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo. Available at: http://www.cnea.gov.ar/xxi/ambiental/iberoarsen/.
  12. Cabrera, H. N., & Gómez, M. L. (2003). Skin cancer induced by arsenic in the water. Journal of Cutaneous Medicine and Surgery, 7(2), 106–111.Google Scholar
  13. Círculo Médico del Rosario. (1917). Sobre la nueva enfermedad descubierta en Bell-Ville. Revista Médica del Rosario, VII (pp. 485). Rosario, Argentina.Google Scholar
  14. de la Sota, M., Puche, R., Rigalli, A., Fernández, M. L., Benassati, S., & Boland, R. (1997). Modificaciones de la masa ósea y en la homeóstasis de la glucosa en residentes de la zona de Bahía Blanca con alta ingesta de flúor. Medicina, 57, 417–420. Buenos Aires, Argentina.Google Scholar
  15. del Razo, L. M., Arellano, M. A., & Cebrián, M. E. (1990). The oxidation states of arsenic in well-water from a chronic arsenicism area of northern Mexico. Pollution, 64, 143–153.CrossRefGoogle Scholar
  16. Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: Hydrous ferric oxide (p. 393). New York: Wiley.Google Scholar
  17. Farías, S. S., Casa, V. A., Vazquez, C., Ferpozzi, L., Pucci, G. N., & Cohen, I. M. (2003). Natural contamination with arsenic and other trace elements in ground waters of Argentine Pampean Plain. Science of the Total Environment, 309, 187–199.CrossRefGoogle Scholar
  18. Florentino, C. E., Paoloni, J. D., Sequerra, M. E., & Arosteguy, P. (2007). The presence of vanadium in groundwater of southeastern extreme the Pampean region Argentina: Relationship with other chemical elements. Journal of Contaminant Hydrology, 93, 122–129.CrossRefGoogle Scholar
  19. Fujii, R., & Swain, W. C. (1995). Areal distribution of selected trace elements, salinity, and major ions in shallow ground water, Tulares Basin, southern San Joaquin Valley, California (67 pp.). US geological survey water-resources investigations report, 95-4048. Denver, USA: US Geological Survey.Google Scholar
  20. García, M. G., Moreno, C., Galindo, M. C., Hidalgo, M. del V., Fernández, & Sracek, O. (2009). Intermediate to high levels of arsenic and fluoride in deep geothermal aquifers from thr northwestern Chaco-Pampean plain, Argentina. CRC Press/Balkema. In J. Bundschuh, M. A. Armienta, P. Birkle, P. Bhattacharya, J. Matschullat, & A. B. Mukherjee (Eds.), Natural arsenic in groundwater of Latin America—occurrence, health impact and remediation (pp. 69–79). Balkema, Boca Raton: CRC Press.Google Scholar
  21. Hopenhayn-Rich, C., Biggs, M. L., Fuchs, A., Bergoglio, R., Tello, E., Nicolli, H., et al. (1996). Bladder cancer mortality associated with arsenic in drinking water in Córdoba, Argentina. Epidemiology, 7, 117–124.CrossRefGoogle Scholar
  22. Nicolli, H. B., Suriano, J. M., Gómez Peral, M. A., Ferpozzi, L. H., & Baleani, O. M. (1989). Groundwater contamination with arsenic and other trace elements in an area of the Pampa, Province of Córdoba, Argentina. Environmental Geology and Water Sciences, 14, 3–16.CrossRefGoogle Scholar
  23. Nicolli, H. B., Tineo, A., Falcón, C. M., & García, J. W. (2005). Distribución del arsénico y otros elementos asociados en aguas subterráneas de la región de Los Pereyra, provincia de Tucumán, Argentina. In G. Galindo, J. L. Fernández Turiel, M. A. Parada, & D. Gimeno Torrente (Eds.), Arsénico en aguas: origen, movilidad y tratamiento (pp. 83–92). Río Cuarto, Argentina: IV Cong. Argentino de Hidrogeología.Google Scholar
  24. Nicolli, H. B., Tineo, A., Falcón, C. M., García, J. W., Merino, M. H., Etchichury, M. C., Alonso, M. S., & Tofalo, O. R. (2008). Hydrogeochemistry of arsenic in groundwaters from Burruyacú basin, Tucumán Province, Argentina. In J. Bundschuh, M. A. Armienta, P. Bhattacharya, J. Matschullat, & A. B. Mukherjee (Eds.), Natural arsenic in groundwaters of Latin America—Occurrence, health impact and remediation. In J. Bundschuh, & P. Bhattacharya (series Eds.), Arsenic in the environment (Vol. 1, pp. 47–59). Leiden, The Netherlands: CRC Press, Balkema.Google Scholar
  25. Nicolli, H. B., Tineo, A., Falcón, C. M., & Merino, M. H. (2001). Movilidad del arsénico y de otros oligoelementos asociados en aguas subterráneas de la cuenca de Burruyacú, provincia de Tucumán, República Argentina. In A. Medina, J. Carrera, & L. Vives (Eds.), Congreso Las Caras del Agua Subterránea I (pp. 27–33). Madrid: Instituto Geológico y Minero de España.Google Scholar
  26. Nicolli, H. B., Tineo, A., & García, J. W. (2000). Estudio hidrogeológico y de calidad del agua en la cuenca del río Salí, provincia de Tucumán. Revista Association Argentina Geología Aplicada a la Ingeniería y al Ambiente, 15, 82–100. Buenos Aires, Argentina.Google Scholar
  27. Nicolli, H. B., Tineo, A., García, J. W., Falcón, C. M., Merino, M. H., Etchichury, M. C., et al. (2004). The role of loess in groundwater pollution at Salí River Basin, Argentina. In R. B. Wanty & R. R. Seals II (Eds.), Water–rock interaction (2nd ed., pp. 1591–1595). Leiden, The Netherlands: Balkema.Google Scholar
  28. Oscarson, D. W., Huang, P. M., Defosse, D., & Herbillion, A. (1981a). Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments. Nature, 291, 50–51.CrossRefGoogle Scholar
  29. Oscarson, D. W., Huang, P. M., & Liaw, W. K. (1981b). Role of manganese in the oxidation of arsenite by freshwater lake sediments. Clays & Clay Minerals, 29, 219–225.CrossRefGoogle Scholar
  30. Parkhurst, D. L., & Appelo, C. (1999). User’s guide to PHREEQC (Version2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geol. Survey Water-Resources Investigations, Report 99–4259. Denver, USA: US Geological Survey.Google Scholar
  31. Smedley, P. L., Kinniburgh, D. G., Macdonald, D. J. M., Nicolli, H. B., Barros, A. J., Tullio, J. O., et al. (2005). Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry, 20(5), 989–1016.CrossRefGoogle Scholar
  32. Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., Barros, A. J., & Tullio, J. O. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17(3), 259–284.CrossRefGoogle Scholar
  33. Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., & Kinniburgh, D. G. (2008). Arsenic in groundwater and sediments from La Pampa province, Argentina. In J. Bundschuh, M. A. Armienta, P. Birkle, P. Bhattacharya, J. Matschullat, & A. B. Mukherjee (Eds.), Natural arsenic in groundwater of Latin America—occurrence, health impact and remediation (pp. 35–45). Boca Raton: CRC Press, Balkema.Google Scholar
  34. Tello, E. (1951). Hidroarsenicismo Crónico Regional Endémico (HACRE), sus manifestaciones clínicas (p. 165). Córdoba, Argentina: Ed. Univ. Nac. de Córdoba.Google Scholar
  35. Tineo, A. (1998). Los acuíferos del cono aluvial del río Salí, provincia de Tucumán, República Argentina. IV Cong. Latinoamericano de Hidrología Subterránea I (pp. 14–24). Uruguay: Montevideo.Google Scholar
  36. Tineo, A., García, J., Falcón, C., D’Urso, C., & Rodríguez, G. (1995). Hidrogeología del cono aluvial del río Salí, provincia de Tucumán, Argentina. IX° Cong. Latinoamericano de Geología II (pp. 515–524). Venezuela: Caracas.Google Scholar
  37. Tineo, A., Iglesias, E., Durán, M., Verma, M., García, J., Falcón, C., et al. (1989). Geochemical survey of the Llanura Tucumana geothermal area, Argentina. Geothermal Resources Council Transactions, XIII, 165–171.Google Scholar
  38. WHO—World Health Organization. (2011). Guidelines for drinking-water quality. Fourth Edition. On line: http://www.who.int/publications/2011/9789241548151_eng.pdf.

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hugo B. Nicolli
    • 1
  • Jorge W. García
    • 2
  • Carlos M. Falcón
    • 2
  • Pauline L. Smedley
    • 3
  1. 1.Instituto de Geoquímica (INGEOQUI) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)San MiguelArgentina
  2. 2.Facultad de Ciencias Naturales e Instituto Miguel LilloUniversidad Nacional de TucumánSan Miguel de TucumánArgentina
  3. 3.British Geological Survey, Kingsley Dunham CentreKeyworth, NottinghamUK

Personalised recommendations