Skip to main content

Release of beryllium from mineral ores in artificial lung and skin surface fluids

Abstract

Exposure to some manufactured beryllium compounds via skin contact or inhalation can cause sensitization. A portion of sensitized persons who inhale beryllium may develop chronic beryllium disease (CBD). Little is understood about exposures to naturally occurring beryllium minerals. The purpose of this study was to assess the bioaccessibility of beryllium from bertrandite ore. Dissolution of bertrandite from two mine pits (Monitor and Blue Chalk) was evaluated for both the dermal and inhalation exposure pathways by determining bioaccessibility in artificial sweat (pH 5.3 and pH 6.5), airway lining fluid (SUF, pH 7.3), and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5). Significantly more beryllium was released from Monitor pit ore than Blue Chalk pit ore in artificial sweat buffered to pH 5.3 (0.88 ± 0.01% vs. 0.36 ± 0.00%) and pH 6.5 (0.09 ± 0.00% vs. 0.03 ± 0.01%). Rates of beryllium released from the ores in artificial sweat were faster than previously measured for manufactured forms of beryllium (e.g., beryllium oxide), known to induce sensitization in mice. In SUF, levels of beryllium were below the analytical limit of detection. In PSF, beryllium dissolution was biphasic (initial rapid diffusion followed by latter slower surface reactions). During the latter phase, dissolution half-times were 1,400 to 2,000 days, and rate constants were ~7 × 10−10 g/(cm2·day), indicating that bertrandite is persistent in the lung. These data indicate that it is prudent to control skin and inhalation exposures to bertrandite dusts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. American Society for Testing and Materials. (2002). Standard test method for metal powder specific surface area by physical adsorption. ASTM International, ASTM B922-02.

  2. Amram, K., & Ganor, J. (2005). The combined effect of pH and temperature on smectite dissolution rate under acidic conditions. Geochimica et Cosmochimica Acta, 69, 2535–2546.

    Article  CAS  Google Scholar 

  3. Ansoborlo, E., Hengé-Napoli, M. H., Chazel, V., Gibert, R., & Guilmette, R. A. (1999). Review and critical analysis of available in vitro dissolution tests. Health Physics, 77, 638–645.

    Article  CAS  Google Scholar 

  4. Chipera, S. J., & Bish, D. L. (2002). FULLPAT. A full-pattern quantitative analysis program for X-ray powder diffraction using measured and calculated patterns. Journal of Applied Crystallography, 35, 744–749.

    Article  CAS  Google Scholar 

  5. Cummings, K. J., Deubner, D. C., Day, G. A., Henneberger, P. K., Kitt, M. M., Kent, M. S., et al. (2007). Enhanced preventive programme at a beryllium oxide ceramics facility reduces beryllium sensitisation among new workers. Occupational and Environmental Medicine, 64, 134–140.

    Article  CAS  Google Scholar 

  6. Curtis, G. H. (1951). Cutaneous hypersensitivity due to beryllium: A study of thirteen cases. Archives of Dermatology and Syphilology, 64, 470–482.

    Article  CAS  Google Scholar 

  7. Deubner, D., Kelsh, M., Shum, M., Maier, L., Kent, M., & Lau, E. (2001). Beryllium sensitization, chronic beryllium disease, and exposures at a beryllium mining and extraction facility. Applied Occupational and Environmental Hygiene, 16, 579–592.

    Article  CAS  Google Scholar 

  8. Finch, G. L., Mewhinney, J. A., Eidson, A. F., Hoover, M. D., & Rothenberg, S. J. (1988a). In vitro dissolution characteristics of beryllium oxide and beryllium metal aerosols. Journal of Aerosol Science, 19, 333–342.

    Article  CAS  Google Scholar 

  9. Finch, G. L., Verburg, R. J., Mewhinney, J. A., Eidson, A. F., & Hoover, M. D. (1988b). The effect of beryllium compound solubility on in vitro canine alveolar macrophage cytotoxicity. Toxicology Letters, 41, 97–105.

    Article  CAS  Google Scholar 

  10. Frommel, D., Ayranci, B., Pfeifer, H. R., Frommel, A., & Mengistu, G. (1993). Podoconiosis in the Ethiopian Rift Valley. Role of beryllium and zirconium. Tropical and Geographical Medicine, 45, 165–167.

    CAS  Google Scholar 

  11. Golubev, S. V., Bauer, A., & Pokrovsky, O. S. (2006). Effect of pH and organic ligands on the kinetics of smectite dissolution at 25 degrees C. Geochimica et Cosmochimica Acta, 70, 4436–4451.

    Article  CAS  Google Scholar 

  12. Harvey, C. J., LeBouf, R. F., & Stefaniak, A. B. (2010). Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicology in Vitro, 24, 1790–1796.

    Article  CAS  Google Scholar 

  13. Hinds, W. (1999). Aerosol technology (2nd ed., p. 49). New York: Wiley.

    Google Scholar 

  14. Hoover, M. D., Castorina, B. T., Finch, G. L., & Rothenberg, S. J. (1989). Determination of the oxide layer thickness on beryllium metal particles. American Industrial Hygiene Association Journal, 50, 550–553.

    Article  CAS  Google Scholar 

  15. Huang, W., Fernandez, D., Rudd, A., Johnson, W. P., Deubner, D., Sabey, P., et al. (2011). Dissolution and nanoparticle generation behavior of Be-associated materials in synthetic lung fluid using inductively coupled plasma mass spectroscopy and flow field-flow fractionation. Journal of Chromatography. A, 1218, 4149–4159.

    Article  CAS  Google Scholar 

  16. International Commission on Radiological Protection (ICRP). (1994). Human respiratory tract model for radiological protection. ICRP Publication 66. Exeter.

  17. Jahns, R. H., Ewing, R. C. (1976). The Harding mine, Taos County, New Mexico. In R. C. Ewing & B. S. Kues (Eds.), Vermejo Park. New Mexico Geological Society guidebook, 27th field conference (pp. 263–276). Socorro: New Mexico Burea of Mines and Mineral Resources.

  18. Julien, C., Esperanza, P., Bruno, M., & Alleman, L. Y. (2011). Development of an in vitro method to estimate lung bioaccessibility of metals from atmospheric particles. Journal of Environmental Monitoring, 13, 621–630.

    Article  CAS  Google Scholar 

  19. Kreiss, K., Day, G. A., & Schuler, C. R. (2007). Beryllium a modern industrial hazard. Annual Review of Public Health, 28, 259–277.

    Article  Google Scholar 

  20. Liu, X. Y., Hurt, R. H., & Kane, A. B. (2010). Biodurability of single-walled carbon nanotubes depends on surface functionalization. Carbon, 48, 1961–1969.

    Article  CAS  Google Scholar 

  21. Maier, L. A., Martyny, J. W., Liang, J., & Rossman, M. D. (2008). Recent chronic beryllium disease in residents surrounding a beryllium facility. American Journal of Respiratory and Critical Care Medicine, 177(9), 1012–1017.

    Article  Google Scholar 

  22. Moss, O. R., & Kanapilly, G. M. (1980). Dissolution of inhaled aerosols. In K. Willeke (Ed.), Generation of aerosols and facilities for exposure experiments (pp. 105–124). Ann Arbor: Ann Arbor Science Publishers Inc.

    Google Scholar 

  23. Russier, J., Menard-Moyon, C., Venturelli, E., Gravel, E., Marcolongo, G., Meneghetti, M., et al. (2011). Oxidative biodegradation of single- and multi-walled carbon nanotubes. Nanoscale, 3, 893–896.

    Article  CAS  Google Scholar 

  24. Sawyer, R. T., & Maier, L. A. (2011). Chronic beryllium disease: An updated model interaction between innate and acquired immunity. BioMetals, 24, 1–17.

    Article  CAS  Google Scholar 

  25. Snyder, J. A., Demchuk, E., McCanlies, E. C., Schuler, C. R., Kreiss, K., Andrew, M. E., et al. (2008). Impact of negatively charged patches on the surface of MHC class II antigen-presenting proteins on risk of chronic beryllium disease. Journal of the Royal Society, Interface, 5, 749–758.

    Article  CAS  Google Scholar 

  26. Stefaniak, A. B., Chipera, S. J., Day, G. A., Sabey, P., Dickerson, R. M., Sbarra, D. C., et al. (2008). Physicochemical characteristics of aerosol particles generated during the milling of beryllium silicate ores: Implications for risk assessment. Journal of Toxicology and Environmental Health, Part A, 71, 1468–1481.

    Article  CAS  Google Scholar 

  27. Stefaniak, A. B., Day, G. A., Hoover, M. D., Breysse, P. N., & Scripsick, R. C. (2006). Differences in dissolution behavior in a phagolysosomal simulant fluid for single-component and multi-component materials associated with beryllium sensitization and chronic beryllium disease. Toxicology in Vitro, 20, 82–95.

    Article  CAS  Google Scholar 

  28. Stefaniak, A. B., Guilmette, R. A., Day, G. A., Hoover, M. D., Breysse, P. N., & Scripsick, R. C. (2005). Characterization of phagolysosomal fluid for study of beryllium aerosol particle dissolution. Toxicology in Vitro, 19, 123–134.

    Article  CAS  Google Scholar 

  29. Stefaniak, A. B., & Harvey, C. J. (2006). Dissolution of materials in artificial skin surface film liquids. Toxicology in Vitro, 20, 1265–1283.

    Article  CAS  Google Scholar 

  30. Stefaniak, A. B., Virji, M. A., & Day, G. A. (2011). Dissolution of beryllium in artificial lung alveolar macrophage phagolysosomal fluid. Chemosphere, 83, 1181–1187.

    Article  CAS  Google Scholar 

  31. Sterner, J. H., & Eisenbud, M. (1951). Epidemiology of beryllium intoxication. A. M. A. Archives of Industrial Hygiene and Occupational Medicine, 4, 123–151.

    CAS  Google Scholar 

  32. Stonehouse, A. J. (1986). Physics and chemistry of beryllium. Journal of Vacuum Science & Technology A, 4, 1163–1170.

    Article  CAS  Google Scholar 

  33. Tinkle, S. S., Antonini, J. M., Rich, B. A., Roberts, J. R., Salmen, R., DePree, K., et al. (2003). Skin as a route of exposure and sensitization in chronic beryllium disease. Environmental Health Perspectives, 111, 1202–1208.

    Article  CAS  Google Scholar 

  34. Turci, F., Tomatis, M., Compagnoni, R., & Fubini, B. (2009). Role of associated mineral fibres in chrysotile asbestos health effects: The case of Balangeroite. Annals of Occupational Hygiene, 53, 491–497.

    Article  CAS  Google Scholar 

  35. Wagner, W. D., Groth, D. H., Holtz, J. L., Madden, G. E., & Stokinger, H. E. (1969). Comparative chronic inhalation toxicity potential of beryllium ores, bertrandite and beryl, with production of pulmonary tumors by beryl. Toxicology and Applied Pharmacology, 15, 10–29.

    Article  CAS  Google Scholar 

  36. Wegner, R., Heinrich-Ramm, R., Nowak, D., Olma, K., Poschadel, B., & Szadkowski, D. (2000). Lung function, biological monitoring, and biological effect monitoring of gemstone cutters exposed to beryls. Occupational and Environmental Medicine, 57, 133–139.

    Article  CAS  Google Scholar 

  37. Weston, A., Snyder, J., McCanlies, E. C., Schuler, C. R., Andrew, M. E., Kreiss, K., et al. (2005). Immunogenetic factors in beryllium sensitization and chronic beryllium disease. Mutation Research, 592, 68–78.

    Article  CAS  Google Scholar 

  38. Zissu, D., Binet, S., & Cavelier, C. (1996). Patch testing with beryllium alloy samples in guinea pigs. Contact Dermatitis, 34, 196–200.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank D. Sbarra at the National Institute for Occupational Safety and Health (NIOSH) for performing the powder surface area measurements. The authors also thank G. Day and B. Doney at NIOSH for their critical review of this manuscript. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aleksandr B. Stefaniak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duling, M.G., Stefaniak, A.B., Lawrence, R.B. et al. Release of beryllium from mineral ores in artificial lung and skin surface fluids. Environ Geochem Health 34, 313–322 (2012). https://doi.org/10.1007/s10653-011-9421-3

Download citation

Keywords

  • Beryllium
  • Bioaccessibility
  • Minerals
  • Sensitization
  • Chronic beryllium disease
  • Exposure