Skip to main content

Residues of fluoroquinolones in marine aquaculture environment of the Pearl River Delta, South China

Abstract

Concentrations and distributions of selected fluoroquinolones (norfloxacin, ciprofloxacin and enrofloxacin) in water, sediments and nine kinds of fish species collected from 6 sites in two marine aquaculture regions of the Pearl River Delta, China, were analyzed by using high-performance liquid chromatography with fluorescence detector (HPLC). The results showed that the concentrations of ciprofloxacin and enrofloxacin were below the limits of quantification (LOQ) in all water samples except for norfloxacin. Norfloxacin and ciprofloxacin concentrations ranged from 1.88 to 11.20 ng g−1 dry wt, 0.76–2.42 ng g−1 dry wt in sediments collected from the Dapeng’ao region (sites 1–3) and ranged from 2.31 to 4.75 ng g−1 dry wt, 1.26–1.76 ng g−1 dry wt in sediments collected from the Hailing Island region (sites 4–6), respectively. However, no enrofloxacin was found in all sediment samples. The three fluoroquinolones (FQs) were detected in all fish samples, and the concentrations were higher in liver tissues than those in muscle tissues. The levels of norfloxacin were higher than ciprofloxacin and enrofloxacin in both liver and muscle tissues. Among the nine marine fish species, Siganus fuscescens from Hailing Island had a significantly high level of norfloxacin in liver tissue (254.58 ng g−1 wet wt), followed by Sparus macrocephalus (133.15 ng g−1 wet wt) from Dapeng’ao, and the lowest value was Lutianus argentimaculatus (5.18 ng g−1 wet wt) from Hailing Island. The obtained results of FQs in present study do not represent a risk to the human health in Guangdong coastal area, based on the maximum residue limits (MRLs) established by Chinese Government and the acceptable daily intake (ADI) recommended by the Food and Agriculture Organization and World Health Organization (FAO/WHO).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Agricultural Sector Criteria of PR China. (2002). Environment-friendly food, codex maximun residue limits for veterinary drugs in aquatic products (NY 5070-2001). Standard Press of China, Beijing (in Chinese).

  2. Andreu, V., Blasco, C., & Pico, Y. (2007). Analytical strategies to determine quinolones residues in food and the environment. Trends in Analytical Chemistry, 26(6), 534–556.

    Article  CAS  Google Scholar 

  3. Bergan, T., Dalhoff, A., & Rohwedder, R. (1988). Pharmacokinetics of ciprofloxacin. Infection, 16(Suppl 1), S3–S13.

    Article  CAS  Google Scholar 

  4. Björklund, H. V., Råbergh, C. M. I., & Bylund, G. (1991). Residues of oxolinic acid and oxytetracycline in fish and sediments from fish farms. Aquaculture, 97(2), 85–96.

    Article  Google Scholar 

  5. Bogialli, S., D’ascenzo, G., Di Corcia, A., Laganà, A., & Nicolardi, S. (2008). A simple and rapid assay based on hot water extraction and liquid chromatography-tandem mass spectrometry for monitoring quinolone residues in bovine milk. Food Chemistry, 108, 354–360.

    Article  CAS  Google Scholar 

  6. Bris, H. L., & Pouliquen, H. (2004). Experimental study on the bioaccumulation of oxytetracycline and oxolinic acid by the blue mussel (Mytilus edulis). An evaluation of its ability to bio-monitor antibiotics in the marine environment. Marine Pollution Bulletin, 48, 434–440.

    Article  Google Scholar 

  7. Brooks, B. W., Chambliss, C. K., Stanley, J. K., Ramirez, A., Banks, K. E., Johnson, R. D., et al. (2005). Determination of select antidepressants in fish from an effluent-dominated stream. Environmental Toxicology and Chemistry, 24, 464–469.

    Article  CAS  Google Scholar 

  8. Brown, S. A. (1996). Fluoroquinolones in animal health. Journal of Veterinary Pharmacology and Threapeutics, 19(1), 1–14.

    Article  CAS  Google Scholar 

  9. Cardoza, L. A., Knapp, C. W., Larive, C. K., Belden, J. B., Lydy, M., & Graham, D. W. (2005). Factors affecting the fate of ciprofloxacin in aquatic field systems. Water, Air, and Soil pollution, 161, 383–398.

    Article  CAS  Google Scholar 

  10. Cheung, K. C., Leung, H. M., Kong, K. Y., & Wong, M. H. (2007). Residual levels of DDTs and PAHs in freshwater and marine fish from Hong Kong markets and their health risk assessment. Chemosphere, 66(3), 460–468.

    Article  CAS  Google Scholar 

  11. EC Decision 2002/657. (2002). Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal of the European Communities, L221, 8–36.

    Google Scholar 

  12. EMEA (2002). The European Agency for the Evaluation of Medicinal Products. Enrofloxacin, extension to all food producing species, Summary report (5), EMEA/MRL/820/02-FINAL.

  13. Golet, E. M., Alder, A. C., Hartmann, A., Ternes, T. A., & Giger, W. (2001). Trace determination of fluoroquinolone antibacterial agents in solid-phase extraction urban wastewater by and liquid chromatography with fluorescence detection. Analytical Chemistry, 73, 3632–3638.

    Article  CAS  Google Scholar 

  14. Golet, E. M., Strehler, A., Alder, A. C., & Giger, W. (2002). Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Analytical Chemistry, 74, 5455–5462.

    Article  CAS  Google Scholar 

  15. Guo, J. Y., Wu, F. C., Shen, R. L., & Zeng, E. Y. (2010). Dietary intake and potential health risk of DDTs and PBDEs via seafood consumption in South China. Ecotoxicology and Environmental Safety, 73(7), 1812–1819.

    Article  CAS  Google Scholar 

  16. Heberer, T. (2002). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology, 266, 175–189.

    Article  CAS  Google Scholar 

  17. Hektoen, H., Berge, J. A., Hormazabal, V., & Yndestad, M. (1995). Persistence of antibacterial agents in marine-sediments. Aquaculture, 133, 175–184.

    Article  CAS  Google Scholar 

  18. Hopper, D. C., & Wolfson, J. S. (1985). The Fluoroquinolones: Pharmacology, clinical uses, and toxicities in humans. Antimicrobial Agents and Chemotherapy Nov Edition pp. 716–721.

  19. Intorre, L., Cechini, S., & Bertini, S. (2000). Pharmacokinetics of enrofloxacin in the seabass. Aquaculture, 182, 49–59.

    Article  CAS  Google Scholar 

  20. Intorre, L., Mengozzi, G., & Bertini, S. (1997). Plasma kinetics and tissue distribution of enrofloxacin and its metabolite ciprofloxacin in the Muscovy Duck. Veterinary Research Communications, 21(2), 127–136.

    Article  CAS  Google Scholar 

  21. Joint FAO/WHO Expert Committee on Food Additives (JECFA), (1997). Summary of evaluations performed by the joint FAO/WHO expert committee on food additives. Enrofloxacin. http://www.inchem.org/documents/jecfa/jeceval/jec_691.htm.

  22. Kim, M. S., Lim, J. H., Park, B. K., Hwang, Y. H., & Yun, H. I. (2006). Pharmacokinetics of enrofloxacin in Korean catfish (Silurus asotus). Journal of Veterinary Pharmacology and Therapeutics, 29(5), 397–402.

    Article  CAS  Google Scholar 

  23. Knoll, U., Glunder, G., & Kietzmann, M. (1999). Comparative study of the plasma pharmacokinetics and tissue concentrations of danofloxacin and enrofloxacin in broiler chickens. Journal of Veterinary Pharmacology and Therapeutics, 22(4), 239–246.

    Article  CAS  Google Scholar 

  24. Kümmerer, K. (2009). Antibiotics in the aquatic environment-A review-Part I. Chemosphere, 75, 417–434.

    Article  Google Scholar 

  25. Küng, K., Riond, J. L., & Wanner, M. (1993). Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after intravenous and oral administration of enrofloxacin in dogs. Journal of Veterinary Pharmacology and Therapeutics, 16(4), 462–468.

    Article  Google Scholar 

  26. Lalumera, G. M., Calamari, D., Galli, P., Castiglioni, S., Crosa, G., & Fanelli, R. (2004). Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy. Chemosphere, 54, 661–668.

    Article  CAS  Google Scholar 

  27. Lam, M. W., Tantuco, K., & Mabury, S. A. (2003). Photo Fate: A new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters. Environmental Science and Technology, 37, 899–907.

    Article  CAS  Google Scholar 

  28. Le, T. X., & Munekage, Y. (2004). Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam. Marine Pollution Bulletin, 49, 922–929.

    Article  CAS  Google Scholar 

  29. Lewbart, G., Vaden, S., Deen, J., Manaugh, C., Whitt, D., Doi, A., et al. (1997). Pharmacokinetics of enrofloxacin in the red pacu (Colossoma brachypomum) after intramuscular, oral and bath administration. Journal of Veterinary Pharmacology and Therapeutics, 20(2), 124–128.

    Article  CAS  Google Scholar 

  30. Lucchetti, D., Fabrizi, L., Guandalini, E., Podesta, E., Marvasi, L., Zaghini, A., et al. (2004). Long depletion time of enrofloxacin in rainbow trout (Oncorhynchus mykiss). Antimicrob Agents Chemotherapy, 48(10), 3912–3917.

    Article  CAS  Google Scholar 

  31. Mimeault, C., Woodhouse, A., Miao, X. S., Metcalfe, C. D., Moon, T. W., & Trudeau, V. L. (2005). The human lipid regulator, gemfibrozil bioconcentrates and reduces testosterone in the goldfish, Carassius auratus. Aquatic Toxicology, 73, 44–54.

    Article  CAS  Google Scholar 

  32. Nakata, H., Kannan, K., Jones, P. D., & Giesy, J. P. (2005). Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection. Chemosphere, 58, 759–766.

    Article  CAS  Google Scholar 

  33. Park, H. R., Kim, T. H., & Bark, K. M. (2002). Physicochemical properties of quinolone antibiotics in various environments. European Journal of Medical Chemistry, 37, 443–460.

    Article  CAS  Google Scholar 

  34. Picó, V., & Andreu, V. (2007). Fluoroquinolones in soil-risk and challenges. Analytical and Bioanalytical Chemistry, 387, 1287–1299.

    Article  Google Scholar 

  35. Pozo, O. J., Guerrero, C., Sancho, J. V., Ibáeñz, M., Pitarch, E., Hogendoorn, E., et al. (2006). Efficient approach for the reliable quantification and confirmation of antibiotics in water using on-line solid-phase extraction liquid chromatography/tandem mass spectrometry. Journal of Chromatography. A, 1103, 83–93.

    Article  CAS  Google Scholar 

  36. Richardson, B. J., Lam, P. K. S., & Martin, M. (2005). Emerging chemicals of concern: Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China. Marine Pollution Bulletin, 50, 913–920.

    Article  CAS  Google Scholar 

  37. Samanidou, V., Evaggelopoulou, E., Trötzmüller, M., Guo, X., & Lankmayr, E. (2008). Multi-residue determination of seven quinolones antibiotics in gilthead seabream using liquid chromatography-tandem mass spectrometry. Journal of Chromatograph A, 1203, 115–123.

    Article  CAS  Google Scholar 

  38. Schwaiger, J., Ferling, H., Mallow, U., Wintermayr, H., & Negele, R. D. (2004). Toxic effects of the non-steroidal anti-inflammatory drug diclofenac Part 1: Histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology, 68, 141–150.

    Article  CAS  Google Scholar 

  39. Tao, R., Ying, G. G., Su, H. C., Zhou, H. W., & Sidhu, J. P. S. (2010). Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China. Environmental Pollution, 158, 2101–2109.

    Article  CAS  Google Scholar 

  40. Tendencia, E. A., & Dela Pena, L. D. (2002). Level and percentage recovery of resistance to oxytetracycline and oxolinic acid of bacteria from shrimp ponds. Aquaculture, 213, 1–13.

    Article  CAS  Google Scholar 

  41. Tittlemier, S. A., Van de Riet, J., Burns, G., Potter, R., Murphy, C., Rourke, W., et al. (2007). Analysis of veterinary drug residues in fish and shrimp composites collected during the Canadian Total Diet Study, 1993–2004. Food Additive and Contaminants, 24(1), 14–20.

    Article  CAS  Google Scholar 

  42. Tolls, J. (2001). Sorption of veterinary pharmaceuticals in soils: A review. Environmental Science and Technology, 36(17), 3397–3406.

    Article  Google Scholar 

  43. Turel, I. (2002). The interactions of metal ions with quinolone antibacterial agents. Coordination Chemistry Reviews, 232(1–2), 27–47.

    Article  CAS  Google Scholar 

  44. Tyczkowska, K., Hedeen, K. M., Aucoin, D. P., & Aronson, A. L. (1989). High-performance liquid chromatographic method for the simultaneous determination of enrofloxacin and its primary metabolite ciprofloxacin in canine serum and prostatic tissue. Journal of Chromatography-Biomedical Applications, 493(2), 337–346.

    CAS  Google Scholar 

  45. Tylova, T., Olsovska, J., Novak, P., & Flieger, M. (2010). High-throughput analysis of tetracycline antibiotics and their epimers in liquid hog manure using Ultra Performance Liquid Chromatography with UV detection. Chemosphere, 78, 353–359.

    Article  CAS  Google Scholar 

  46. Ueno, R., Okada, Y., & Tatsuno, T. (2001). Pharmacokinetics and metabolism of miloxacin in cultured eel. Aquaculture, 192(1–2), 11–24.

    Article  Google Scholar 

  47. Venglovsky, J., Sasakova, N., & Placha, I. (2009). Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application. Bioresource Technology, 100, 5386–5391.

    Google Scholar 

  48. Vragović, N., Bažulić, D., & Njari, B. (2011). Risk assessment of streptomycin and tetracycline residues in meat and milk on Croatian market. Food and Chemical Toxicology, 49(2), 352–355.

    Article  Google Scholar 

  49. Wang, J., Ai, Q. H., Mai, K. S., Xu, W., Xu, H. G., Zhang, W. B., et al. (2010). Effects of dietary ethoxyquin on growth performance and body composition of large yellow croaker Pseudosciaena crocea. Aquaculture, 306, 80–84.

    Article  CAS  Google Scholar 

  50. Xu, W. H., Zhang, G., Zou, S. C., Li, X. D., & Liu, Y. C. (2007). Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution, 145, 672–679.

    Article  CAS  Google Scholar 

  51. Yu, J., Tang, D. L., Oh, I. S., & Yao, L. J. (2007). Response of harmful algal blooms to environmental changes in Daya Bay, China. Terrestrial Atmospheric and Oceanic Sciences, 18(5), 1011–1027.

    Article  Google Scholar 

  52. Zhang, J. Q., & Dong, Y. H. (2008). Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China. Journal of Hazardous Material, 151, 833–839.

    Article  CAS  Google Scholar 

  53. Zhang, H., & Huang, C. H. (2007). Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 66(8), 1502–1512.

    Article  CAS  Google Scholar 

  54. Zhang, H., Zhang, J., & Zhu, Y. (2009). Identification of Microcystins in waters used for Daiky life by people who live on tai lake during a serious cyanobacteria dominated bloom with risk analysis to human health. Environmental Toxicology, 24(1), 82–86.

    Article  Google Scholar 

  55. Zhao, S., Jiang, H., Li, X., Mi, T., Li, C., & Shen, J. (2007). Simultaneous determination of trace levels of 10 Quinolones in Swine, Chicken, and Shrimp Muscle tissues using HPLC with programmable fluorescence detection. Journal of Agricultural and Food Chemistry, 55, 3829–3834.

    Article  CAS  Google Scholar 

  56. Zhou, L. J., Ying, G. G., Zhao, J. L., Yang, J. F., Wang, L., Yang, B., et al. (2011). Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environmental Pollution, 159, 1877–1885.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No: U0633006, 40471118, 40976072) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiangping Nie or Kunci Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

He, X., Wang, Z., Nie, X. et al. Residues of fluoroquinolones in marine aquaculture environment of the Pearl River Delta, South China. Environ Geochem Health 34, 323–335 (2012). https://doi.org/10.1007/s10653-011-9420-4

Download citation

Keywords

  • Fluoroquinolones (FQs)
  • Marine aquaculture
  • Residue
  • Pearl River Delta
  • Risk assessment