Abstract
This study aimed to determine whether >110 years of sewage application has led to recognizable changes in the metal chemistry of soils from former sewage farms, Berlin, Germany. Background concentrations of soils and element enrichment factors were used for the evaluation of possible perturbations of natural element abundances in sewage farm soils. Calculations verify that precious metals (Ag, Au) as well as P, Corg, and heavy metals (Cd, Cu, Ni, Pb, Sn, and Zn) are invariably enriched in sewage farm topsoils (0–0.1 m depth) compared to local and regional background soils. Long-term irrigation of soils with municipal wastewater has caused significant heavy metal contamination as well as a pronounced enrichment in precious metals. Leaching of metals including Ag into underlying aquifers may impact on the quality of drinking water supplies.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aboulroos, S. A., Holah, S., & Badawy, S. H. (1989). Influence of prolonged use of sewage effluent in irrigation on heavy metal accumulation in soils and plants. Zeitschrift für Pflanzenernährung und Bodenkunde, 152, 51–55.
Birke, M., & Rauch, U. (2000). Urban geochemistry: Investigations in the Berlin metropolitan area. Environmental Geochemistry and Health, 22, 233–248.
Blume, H. P., Horn, R., Alaily, F., Jayakody, A. N., & Meshref, H. (1980). Sand Cambisol functioning as a filter through long-term irrigation with wastewater. Soil Science, 130, 186–192.
Chattopadhyay, A. (1977). Optimal use of instrumental neutron and photon activation analyses for multielement determinations in sewage sludges. Journal of Radioanalytical Chemistry, 37, 785–799.
Eby, G. N. (2004). Principles of environmental geochemistry. Pacific Grove: Brooks/Cole Thomson Learning.
Egan, A., & Spyrou, N. M. (1977). Determination of heavy metals in sewage-based fertilizer using short-lived isotopes. Journal of Radioanalytical Chemistry, 37, 775–784.
Eriksson, J. (2001) Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertilizer, precipitation and in oil and crops. Swedish Environmental Protection Agency, report 5159.
Furr, A. K., Lawrence, A. W., Tong, S. S. C., Grandolfo, M. C., Hofstader, R. A., Bache, C. A., et al. (1976). Multielement and chlorinated hydrocarbon analysis of municipal sewage sludges of American cities. Environmental Science and Technology, 10, 683–687.
Gabler, R. C. (1979). Incinerated municipal sewage sludge as a potential secondary resource for metals and phosphorus. United States Department of the Interior, Bureau of Mines Report of Investigations no. 8390.
Gulbrandsen, R. A. (1978). Gold and silver in ash of incinerated sewage sludge. United States Geological Survey Professional Paper 1100.
Hamilton, A. J., Stagnitti, F., Xiong, X., Kreidl, S. L., Benke, K. K., & Maher, P. (2007). Wastewater irrigation: The state of play. Vadose Zone Journal, 6, 823–840.
Hirsch, M. P. (1998). Availability of sludge-borne silver to agricultural crops. Environmental Toxicology and Chemistry, 17, 610–616.
Hoffmann, C., Marschner, B., & Renger, M. (1998). Influence of DOM-quality, DOM-quantity and water regime on the transport of selected heavy metals. Physics and Chemistry of the Earth, 232, 205–209.
Hoffmann, C., & Renger, M. (1998). Schwermetallmobilität in Rieselfeldböden. Bodenökologie und Bodengenese, 26, 30–39.
Hoffmann, C., Savric, I., Jozefaciuk, G., Hajnos, M., Sokolowska, Z., Renger, M., et al. (2002). Reaction of sewage farm soils to different irrigation solutions in a column experiment. 2. Heavy metals and their leaching. Journal of Plant Nutrition and Soil Science, 165, 67–71.
Horner, C., Engelmann, F., & Nützmann, G. (2009). Model based verification and prognosis of acidification and sulphate releasing processes downstream of a former sewage field in Berlin (Germany). Journal of Contaminant Hydrology, 106, 83–98.
Johansson, M., Pell, M., & Stenstrom, J. (1998). Kinetics of substrate-induced respiration (SIR) and denitrification: Applications to a soil amended with silver. Ambio, 27, 40–44.
Jones, K. C., Peterson, P. J., & Davies, B. E. (1984). Extraction of silver from soils and its determination by atomic absorption spectrometry. Geoderma, 33, 157–168.
Kim, J. I., Fiedler, I., Born, H.-J., & Lux, D. (1981). Identification and behaviour of trace inorganic elements in an urban sewage treatment plant by monostandard activation analysis. International Journal of Environmental Analytical Chemistry, 10, 135–148.
Kim, J. I., Fiedler, I., & Lux, D. (1982). Multielement trace analysis for inorganic species in large-volume water samples by mono-standard neutron-activation analysis. Mikrochimica Acta, 1, 137–153.
Krivan, V., & Egger, K. P. (1986). Multielementanalyse von Schwebstäuben der Stadt Ulm und Vergleich der Luftbelastung mit anderen Regionen. Fresenius Zeitschrift für Analytische Chemie, 325, 41–49.
Li, P. J., Stagnitti, F., Allinson, G., Turoczy, N., Xiong, X., & Peterson, J. (2006). Sorption and fractionation of copper in soil at a sewage irrigation farm in Australia. Communications in Soil Science and Plant Analysis, 37, 1031–1042.
Li, P. J., Stagnitti, F., Xiong, X., & Peterson, J. (2009a). Temporal and spatial distribution patterns of heavy metals in soil at a long-standing sewage farm. Environmental Monitoring and Assessment, 149, 275–282.
Li, P. J., Wang, X., Allinson, G., Li, X., & Xiong, X. (2009b). Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China. Journal of Hazardous Materials, 161, 516–521.
Lottermoser, B. G. (1994). Gold and platinoids in sewage sludges. International Journal of Environmental Studies, 46, 167–171.
Lottermoser, B. G. (1995). Noble metals in municipal sewage sludges of southeastern Australia. Ambio, 24, 354–357.
Lottermoser, B. G. (2001). Gold in municipal sewage sludges: A review on concentrations, sources and potential extraction. Journal of Solid Waste Technology and Management, 27, 69–75.
Marschner, B., Henke, U., & Wessolek, G. (1995). Effects of meliorative additives on the adsorption and binding forms of heavy metals in a contaminated topsoil from a former sewage farm. Zeitschrift für Pflanzenernährung und Bodenkunde, 158, 9–14.
McBride, M. B., Richards, B. K., Steenhuis, T., Russo, J. J., & Sauve, S. (1997). Mobility and solubility of toxic metals and nutrients in soil fifteen years after sludge application. Soil Science, 162, 487–500.
Messerschmidt, J., von Bohlen, A., Alt, F., & Klockenkamper, R. (2000). Separation and enrichment of palladium and gold in biological and environmental samples, adapted to the determination by total reflection X-ray fluorescence. Analyst, 125, 397–399.
Mumma, R. O., Rashid, K. A., Raupach, D. C., Shane, B. S., Scarlet-Kranz, J. M., Bache, C. A., et al. (1988). Mutagens, toxicants, and other constituents in small city sludges in New York State. Archives of Environmental Contamination and Toxicology, 17, 657–663.
Mumma, R. O., Raupach, D. R., Waldman, J. P., Hotchkiss, J. H., Gutenmann, W. H., Bache, C. A., et al. (1983). Analytical survey of elements and other constituents in Central New York State sewage sludges. Archives of Environmental Contamination and Toxicology, 12, 581–587.
Mumma, R. O., Raupach, D. C., Waldman, J. P., Tong, S. S. C., Jacobs, M. L., Babish, J. G., et al. (1984). National survey of elements and other constituents in municipal sewage sludges. Archives of Environmental Contamination and Toxicology, 13, 75–84.
Reimann, C., & de Caritat, P. (1998). Chemical elements in the environment. Factsheets for the geochemist and environmental scientist. Berlin, Heidelberg, New York: Springer.
Reimann, C., & de Caritat, P. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science and Technology, 34, 5084–5091.
Richter, D., Massmann, G., Taute, T., & Duennbier, U. (2009). Investigation of the fate of sulfonamides downgradient of a decommissioned sewage farm near Berlin, Germany. Journal of Contaminant Hydrology, 106, 183–194.
Senate Department of Urban Development (2011). Sewage farms. http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ei110.htm.
Siebe, C., & Fischer, W. R. (1996). Effect of long-term irrigation with untreated sewage effluents on soil properties and heavy metal adsorption of Leptosols and Vertisols in central Mexico. Zeitschrift für Pflanzenernährung und Bodenkunde, 159, 357–364.
Smith, K. S., & Huyck, H. L. O. (1999). An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. In G. S. Plumlee & M. S. Logsdon (Eds.), The environmental geochemistry of mineral deposits. Part A: Processes techniques and health issues (pp. 29–70). Littleton: Society of Economic Geologists.
Van de Velde, K., Barbante, C., Cozzi, G., Moret, I., Bellomia, T., Ferrari, C., et al. (2000). Changes in the occurrence of silver, gold, platinum, palladium and rhodium in Mont Blanc ice and snow since the 18th century. Atmospheric Environment, 34, 3117–3127.
Xiong, X., Li, P., Stagnitti, F., Turoczy, N., Allinson, G., Sherwood, J., et al. (2004). Speciation of heavy metals in sewage irrigated pastures. Bulletin of Environmental Contamination and Toxicology, 73, 71–76.
Xiong, X., Stagnitti, F., Peterson, J., Allinson, G., & Turoczy, N. (2001). Heavy metal contamination of pasture soils by irrigated municipal sewage. Bulletin of Environmental Contamination and Toxicology, 67, 535–540.
Acknowledgments
Financial support by the Alexander von Humboldt Foundation is gratefully acknowledged. Dr. N. C. Munksgaard conducted the soil leaching experiments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lottermoser, B.G. Effect of long-term irrigation with sewage effluent on the metal content of soils, Berlin, Germany. Environ Geochem Health 34, 67–76 (2012). https://doi.org/10.1007/s10653-011-9391-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10653-011-9391-5