Skip to main content

Advertisement

Log in

Health effects of ingestion of mercury-polluted urban soil: an animal experiment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Rio Grande, the southernmost Brazilian port and industrial center, is marked by mercury-polluted ground cover. This pollution varies spatially, with levels exceeding 1,000 μg kg−1 in 30% of the urban territory. The risk of Hg impact as a result of deliberate and involuntary geophagy is increased by restrained urban conditions in combination with the large proportion of the population living at low-income levels. Laboratory tests have demonstrated that ingestion of Hg-polluted soil by rats results in significant alterations in animal health such as stagnation in body weight increase, and significant mercury accumulation in the liver and kidney. The consumption of Hg-contaminated urban soil also provoked changes in hematological profiles of experimental animals by increasing the number of platelets. The present study indicates the potential for the local population of Rio Grande living in mercury-polluted districts, specifically young children, to experience health disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Archer, J. (1973). Test for emotionality in rats and mice: A review. Animal Behavior, 21(2), 205–235.

    Article  CAS  Google Scholar 

  • Bashir, S., Sharma, Y., Irshad, M., Nag, T. C., & Tiwari, M., et al. (2006) Arsenic induced apoptosis in rat liver following repeated 60 days exposure. Toxicology. doi:10.1016/j.tox.2005.08.023.

  • Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 40(12), 1335–1351.

    Article  CAS  Google Scholar 

  • Calabrese, E. J., & Stanek, E. J. (1992). Distinguishing outdoor soil ingestion from indoor dust ingestion in a soil pica child. Regularory Toxicology and Pharmacology, 15, 83–85.

    Article  CAS  Google Scholar 

  • Castoldi, A. F., Onishchenko, N., Johansson, C., Coccini, T., Roda, E. & Vahter, M., et al. (2008) Neurodevelopmental toxicity of methylmercury: Laboratory animal data and their contribution to human risk assessment. Regulatory Toxicology and Pharmacology. doi:10.1016/j.yrtph.2008.03.005.

  • Charbonneau, S. M., Munro, I. C., Nera, E. A., Willes, R. F., et al. (1974). Subacute toxicity of methylmercury in the adult cat. Toxicology and Applied Pharmacology, 27, 569–581.

    Article  CAS  Google Scholar 

  • Chuu, J. J., Liu, S. H. & Lin-Shiau, S. Y. (2000). Differential neurotoxic effects of methylmercury and mercuric sulfide in rats. Toxicology Letters. doi:10.1016/j.toxlet.2006.12.006.

  • COBEA.Colégio Brasileiro de Experimentação Animal. (1991). Os princípios éticos da experimentação animal. SP: São Paulo.

    Google Scholar 

  • Edwards, C. H., Johnson, A. A., Knight, E. M., Oyemade, U. J., Cole, O. J., Westney, O. E., et al. (1994). Pica in an urban-environment. Journal of Nutrition, 124, 954–962.

    Google Scholar 

  • Ersson, B., Lönnerdal, B., & Oskarsson, A. (1999). Protein binding of mercury in milk and plasma from mice and man—a comparison between methylmercury and inorganic mercury. Toxicology, 137, 169–184.

    Article  Google Scholar 

  • Finn, D. A., Rutledge-Gorman, M. T. & Crabbe, J. C. (2003). Genetic animal models of anxiety. Neurogenetics, 4, 109–135.

    Google Scholar 

  • Fossato da Silva, D. A., Teixeira, C. T., Scarano, W. R., Favareto, A. P. A., Fernandez, C. D. B., Grotto, D., Barbosa Jr. F.& Kempinas, W. (2011). Effects of methylmercury on male reproductive functions in Wistar rats. Reproductive Toxicology (in press).

  • Fukuda, K. (1971). Metallic mercury induced tremor in rabbits and mercury content of the central nervous system. British Journal of Industrial Medicine, 28(3), 308–311.

    CAS  Google Scholar 

  • Gad, S., & Chengelis, C. (1998). Acute Toxicology Testing. Second ed., Academic Press, San Diego. CA: Lange Medical.

    Google Scholar 

  • Geissler, P. W. (2000). The significance of earth-eating: Social and cultural aspects of geophagy among Luo children. Africa, 70, 653–682.

    Article  Google Scholar 

  • Hac,E., Krzyzanowski, M. & Krechniaka, J. (2000). Total mercury in human renal cortex, liver, cerebellum and hair. Science of the Total Environment. doi:10.1016/S0048-9697(99)00474-X.

  • Hall, B. D., Bodaly, R. A., Fudge, R. J. P., Rudd, J. W. M., & Rosneberg, D. M. (1997). Food as the dominant pathway of methylmercury uptake by fish. Water, Air, and Soil pollution, 100, 13–24.

    CAS  Google Scholar 

  • Henon, P., Gerota, I., & Caen, J. (1974). Geophagia in Paris. Nouvelle Presse Medicale, 4, 1431.

    Google Scholar 

  • Inacio, M. M., Pereira, V., & Pinto, M. S. (1998). Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal). Geogerma, 85, 325–339.

    CAS  Google Scholar 

  • Jadhav, S. H., Sarkar, S. N., Patil, R. D. & Tripathi, H. C. (2007). Effects of subchronic exposure via drinking water to a mixture of eight water-contaminating metals: a biochemical and histopathological study in male rats. Archives of Environmental Contamination and Toxicology. doi:10.1007/s00244-007-0031-0.

  • Johansen, P., Mulvad G., Pedersen H. S., Hansen, J. C. & Riget, F. (2006). Accumulation of cadmium in livers and kidneys in Greenlanders. The Science of the Total Environment. doi:10.1016/j.scitotenv.2006.08.005.

  • Joshi, D., Mittal, D. K., Bhadauria, M., Nirala, S. K., Shrivastava, S. & Shukla, S. (2010). Role of micronutrients against dimethylmercury intoxication in male rats. Environmental Toxicology and Pharmacology. doi:10.1016/j.etap.2009.11.002.

  • Kishi, R., Hashimoto, K., Shimizu, S., & Kobayashi, M. (1978). Behavioral changes and mercury concentrations in tissues of rats exposed to mercury vapor. Toxicology and Applied Pharmacology, 46(3), 555–566.

    Article  CAS  Google Scholar 

  • Klein, R., Herman, S. P., Brubaker, P. E., & Krigman, M. R. A. (1972). Model of acute methylmercury intoxication in rats. Archives of Pathology, 93, 408–418.

    CAS  Google Scholar 

  • Lanphear, B. P., & Roghmann, K. L. (1997). Pathways of lead exposure in urban children. Environmental Research, 74, 67–73.

    Article  CAS  Google Scholar 

  • Lesch, K. P., Zeng, Y., Reif, A. & Gutknecht, L. (2003). Anxiety-related traits in mice with modified genes of the serotoninergic pathway. European Journal of Farmacology. doi:10.1016/j.ejphar.2003.08.106.

  • Ljung, K., Selinus, O., Otabbong, E. & Berglund, M. (2006). Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Applied Geochemistry. doi:10.1016/j.apgeochem.2006.05.005.

  • Luoba, A. I., Geissler, P. W., Estambale, B., Ouma, J. H., Alusala, D., Ayah, R., et al. (2005). Earth-eating and reinfection with intestinal helminths among pregnant and lactating women in western Kenya. Tropical Medicine and International Health, 10, 220–227.

    Article  Google Scholar 

  • Magos, L. (1982). Neurotoxicity, anorexia and the preferential choice of antidote in methylmercury intoxicated rats. Neurobehavioral Toxicology and Teratology, 4(6), 643–646.

    CAS  Google Scholar 

  • Maurice-Bourgoin, L., Quiroga, I., Chincheros, J., & Courau, P. (2000). Mercury distribution in waters and fishes of the upper Madeira rivers and mercury exposure in riparian Amazonian populations. Science of the Total Environment, 260, 73–86.

    Article  CAS  Google Scholar 

  • Mills, A. & Milewski, A. (2006). Geophagy and nutrient supplementation in the Ngorongoro Conservation Area, Tanzania, with particular reference to selenium, cobalt and molybdenum. Journal of Zoology. doi:10.1111/j.1469-7998.2006.00241.x.

  • Mirlean, N. & Oliveira, C. (2006). Mercury in coastal reclamation fills in southernmost Brazil: historical and environmental facets. Journal of Coastal Research. doi:10.2112/04-0352.1.

  • Moya, J., Bearer, C. F., & Etzel, R. A. (2004). Children’s behavior and physiology and how it affects exposure to environmental contaminants. Pediatrics, 113, 996–1006.

    Google Scholar 

  • Munro, I. C., Nera, S. M., Charbonneau, S. M., Junkins, B., & Zawidzka, Z. (1980). Chronic toxicity of methylmercury in the rat. Journal of Environmental Pathology and Toxicology, 3, 437–447.

    CAS  Google Scholar 

  • Oliver, M. A. (1997). Soil and human health: A review. European Journal of Soil Science, 4, 8573–8592.

    Google Scholar 

  • Pellow, S., Chopin, P., File, S., & Briley, M. (1985). Validation of open/closed arms entries in an elevated plus maze as a measure of anxiety in the rats. Journal of Neuroscience Methods, 14, 149–167.

    Article  CAS  Google Scholar 

  • Shaw, B. P., Dash, S., & Panigrahi, A. K. (1991). Effects of methyl mercuric chloride treatment on hematological characteristics and erythrocyte morphology of Swiss mice. Environmental Pollution, 72, 43–52.

    Article  Google Scholar 

  • Sheppard, S. C. (1995). A model to predict concentration enrichment of contaminants on soil adhering to plants and skin. Environmental Geochemistry and Health, 17, 13–20.

    Article  CAS  Google Scholar 

  • Sheppard, S. C., Evenden, W. G., & Schwartz, W. J. (1995). Ingested soil: Bioavailability of sorbed lead, cadmium, cesium, iodine, and mercury. Journal of Environmental Quality, 24, 498–505.

    Article  CAS  Google Scholar 

  • Shidu, P. M. L., Morgenstern, P., Vogt, J., Butz, T., & Dhawan, D. K. (2005). Ineffectiveness of nickel in augmentation the hepatotoxicity in protein deficient rats. Nutrition Hospital, 20, 378–385.

    Google Scholar 

  • Simon, S. L. (1998). Soil ingestion by humans: A review of history, data, and etiology with application to risk assessment of radioactively contaminated soil. Health Physics, 74, 647–672.

    Article  CAS  Google Scholar 

  • Smith, B., Rawlins, B. G., Cordeiro, M. J. A. R., Hutchins, M. G., Sserunjogi, L., & Tomkins, A. M. (2000). The bio-accessibility of essential and potentially toxic trace elements in tropical soils from Mukono District, Uganda. Journal of the Geological Society, 157, 885–891.

    Article  CAS  Google Scholar 

  • U.S. EPA (1996). Exposure Factors Handbook. Washington, DC:U.S. Environmental Protection Agency. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=12464. Accessed 22 July 2010.

  • Valko, M., Morris, H., & Cronin, M. (2005). Metals, toxicity and oxidative stress. Current Medical Chemistry, 12, 1161–1208.

    Article  CAS  Google Scholar 

  • Valko, M., Rhodes, C. J., Monco,l. J., Izakovic, M. & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions. doi:10.1016/j.cbi.2005.12.009.

  • Verschuuren, H. G., Kroes, R., Engelina, M., Tonkelaar, D., et al. (1976a). Toxicity of methylmercury chloride in rats I. Short-term study. Toxicology, 6, 85–96.

    Article  CAS  Google Scholar 

  • Verschuuren, H. G., Kroes, R., Engelina, M., Tonkelaar, D., et al. (1976b). Toxicology of methylmercury chloride in rats II. Reproduction study. Toxicology, 6, 97–106.

    Article  CAS  Google Scholar 

  • Verschuuren, H. G., Kroes, R., Engelina, M., Tonkelaar, D., et al. (1976c). Toxciology of methylmercury chloride in rats III. Long term toxicity study. Toxicology, 6, 107–123.

    Article  CAS  Google Scholar 

  • WHO (Organization). (1978). Mercury. (Environmental health criteria, n.1). WHO: World Health Geneva.

    Google Scholar 

  • Yamamoto, R., Suzuki, T., Satoh, H., & Kawai, K. (1986). Generation and dose as modifying factors of inorganic mercury accumulation in brain, liver, and kidneys of rats fed methylmercury. Environmental Research, 41, 309–318.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Brazilian National Research Council (CNPq).The manuscript has greatly benefited from reviews by anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai Mirlean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muccillo–Baisch, A.L., Mirlean, N., Carrazzoni, D. et al. Health effects of ingestion of mercury-polluted urban soil: an animal experiment. Environ Geochem Health 34, 43–53 (2012). https://doi.org/10.1007/s10653-011-9389-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-011-9389-z

Keywords

Navigation