Skip to main content

Advertisement

Log in

Abiotic subsurface behaviors of As(V) with Fe(II)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Subsurface geochemical behavior of As(V) with Fe(II) was studied under strict anoxic conditions. Abiotic reduction of As(V) (0.1 mM) to As(III) by aqueous Fe(II) and sorbed Fe(II) in pH range 5.0–7.0 and Fe(II)aq concentration (0.6–1.2 mM) was investigated along with the effect of As(V) on the oxidation of Fe(II) by dissolved oxygen (DO). Although the reduction was thermodynamically feasible for homogeneous chemical conditions, practically no As(V) reduction by aqueous Fe(II) was observed. Similarly, no sorbed As(V) reduction was observed under the heterogeneous experimental conditions by sorbed Fe(II) onto synthetic iron oxide (hematite, α-Fe2O3). Experimental results on Fe(II) oxidation by DO in the presence of 0.1 mM As(V) showed a significantly slower Fe(II) oxidation, which might be due to the formation of Fe(II)–As(V) complex in the aqueous phase. The results of this study demonstrate that As(V) is relatively stable in the presence of Fe(II) under subsurface environment and interfere the oxidation of Fe(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2007). Toxicological profile for Arsenic. U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. http://www.atsdr.cdc.gov/toxprofiles/tp2.pdf.

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2009). Case studies in environmental medicine. Arsenic toxicity. U.S. Public Health Service, U.S. Department of Health and Human Services, Altanta, GA. http://www.atsdr.cdc.gov/csem/arsenic/docs/arsenic.pdf.

  • Ahn, J. S., Ko, K. S., Lee, J. S., & Kim, J. Y. (2005). Characteristics of natural Arsenic contamination in groundwater and its occurrences. Economic and Environmental Geology, 38(5), 547–561.

    Google Scholar 

  • Bang, S. B., Choe, E. Y., & Kim, K. Y. (2005). Treatment technologies for Arsenic removal from groundwater: Review paper. Economic and Environmental Geology, 38(5), 599–606.

    Google Scholar 

  • Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat. Environmental Science and Technology, 35(13), 2621–2626.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Samanta, G., Mandal, B. K., Chowdhury, T. R., Chanda, C. R., Biswas, B. K., et al. (1998). Calcutta’s industrial pollution: Groundwater arsenic contamination in a residential area and suffering of people due to industrial effluent discharge—an eight-year study report. Current Science, 74(4), 346–355.

    CAS  Google Scholar 

  • Charlet, L., Bosbach, D., & Peretyashko, T. (2002). Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): An AFM study. Chemical Geology, 190(1/4), 303–319.

    Article  CAS  Google Scholar 

  • Cheng, Z., van Geen, A., Seddique, A. A., & Ahmed, K. M. (2005). Limited temporal variability of arsenic concentrations in 20 wells monitored for 3 years in Araihazar, Bangladesh. Environmental Science and Technology, 39(13), 4759–4766.

    Article  CAS  Google Scholar 

  • Dhar, R. K., Biswas, B. K., Samanta, G., & Mandel, B. (1997). Groundwater Arsenic calamity in Bangladesh. Current Science, 73(1), 48–59.

    CAS  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of Arsenic(V) and Arsenic(III) sorption onto iron oxide minerals: Implication for arsenic mobility. Environmental Science and Technology, 37(18), 4182–4189.

    Article  CAS  Google Scholar 

  • Duff, M. C., Coughlin, J. U., & Hunter, D. B. (2002). Uranium co-precipitation with iron oxide minerals. Geochimica et Cosmochimica Acta, 66(20), 533–3547.

    Article  Google Scholar 

  • Fendorf, S. E., & Li, G. (1996). Kinetics of chromate reduction by ferrous iron. Environmental Science and Technology, 30(5), 1614–1617.

    Article  CAS  Google Scholar 

  • Fredrickson, J. K., Zachara, J. M., Kennedy, D. W., Kukkadapu, R. K., McKinley, J. P., Heald, S. M., et al. (2004). Reduction of TcO4 − by sediment-associated biogenic Fe(II). Geochimica et Cosmochimica Acta, 68(15), 3171–3187.

    Article  CAS  Google Scholar 

  • Hering, J. G., Chen, P. Y., Wilkie, J. A., & Elimelech, M. (1997). Arsenic removal from drinking water during coagulation. Journal of Environmental Engineering, 123(8), 800–808.

    Article  CAS  Google Scholar 

  • Jeon, B. H., Dempsey, B. A., & Burgos, W. D. (2003). Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides. Environmental Science and Technology, 37(15), 3309–3315.

    Article  CAS  Google Scholar 

  • Jeon, B. H., Dempsey, B. A., Burgos, W. D., Barnett, M. O., & Roden, E. E. (2005). Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides. Environmental Science and Technology, 39(15), 5642–5649.

    Article  CAS  Google Scholar 

  • Jeon, B. H., Dempsey, B. A., Burgos, W. D., & Royer, R. A. (2001). Reactions of ferrous iron with hematite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 191(1/2), 41–55.

    Article  CAS  Google Scholar 

  • Jeon, B. H., Dempsey, B. A., Royer, R. A., & Burgos, W. D. (2004). Low-temperature oxygen trap for maintaining strict anoxic conditions. Journal of Environmental Engineering, 130(11), 1407–1410.

    Article  CAS  Google Scholar 

  • Johnston, R. B., & Singer, P. C. (2007a). Solubility of symplesite (ferrous arsenate): Implications for reduced groundwaters and other geochemical environments. Soil Science Society of America Journal, 71(1), 101–107.

    Article  CAS  Google Scholar 

  • Johnston, R. B., & Singer, P. C. (2007b). Redox reactions in the Fe-As-O2 system. Chemosphere, 69(4), 517–525.

    Article  CAS  Google Scholar 

  • Liger, E., Charlet, L., & Van Cappellen, P. (1999). Surface catalysis of uranium(VI) reduction by iron(II)—spectroscopic evidence for sorption and reduction. Geochimica et Cosmochimica Acta, 63(19/20), 2939–2955.

    Article  CAS  Google Scholar 

  • Luther, G. W. (1987). Pyrite oxidation and reduction: Molecular orbital theory considerations. Geochimica et Cosmochimica Acta, 51(12), 3193–3199.

    Article  CAS  Google Scholar 

  • Meng, X. G., & Wang, W. (1998). Speciation of arsenic by disposable cartridges. In Book of posters of the third international conference on arsenic exposure and health effects. Society of Environmental Geochemistry and Health, University of Colorado at Denver, Denver, CO.

  • Pourbaix, M. (1966). Atlas of electrochemical equilibria. Oxford: Pergamon Press.

    Google Scholar 

  • Refait, P., Girault, P., Jeannin, M., & Rose, J. (2009). Influence of arsenate species on the formation of Fe(III) oxyhydroxides and Fe(II–III) hydroxychloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 332(1), 26–35.

    Article  CAS  Google Scholar 

  • Ryu, J. I.-h, Gao, S., Dahlgren, R. A., & Zierenberg, R. A. (2002). Arsenic distribution, speciation and solubility in shallow groundwater of Owens Dry Lake, California. Geochimica et Cosmochimica Acta, 66(17), 2981–2994.

    Article  CAS  Google Scholar 

  • Sedlak, D. L., & Chan, P. G. (1997). Reduction of hexavalent chromium by ferrous iron. Geochimica et Cosmochimica Acta, 61(11), 2185–2192.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry (3rd edn ed.). New York: Wiley.

    Google Scholar 

  • Stumm, W., & Sulzberger, B. (1992). The cycling of iron in natural environments: Considerations based on laboratory studies of heterogeneous redox processes. Geochimica et Cosmochimica Acta, 56(8), 3233–3257.

    Article  CAS  Google Scholar 

  • Thoral, S., Rose, J., Garnier, J. M., van Geen, A., Refait, P., Traverse, A., et al. (2005). XAS study of Iron and Arsenic speciation during Fe(II) oxidation in the presence of As(III). Environmental Science and Technology, 39(24), 9478–9485.

    Article  CAS  Google Scholar 

  • Yi, J. S., Lee, J. M., & Chon, H. T. (2003). Chemical speciation of Arsenic in the water system from some abandoned Au-Ag mines in Korea. Economic and Environmental Geology, 36(6), 481–490.

    Google Scholar 

  • Zachara, J. M., Heald, S. M., Jeon, B. H., Kukkadapu, R. K., Liu, C., Mckinley, J. P., et al. (2007). Reduction of pertechnetate [Tc(VII)] by aqueous Fe(II) and the nature of solid phase redox products. Geochimica et Cosmochimica Acta, 71(9), 2137–2157.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Korea Mine Reclamation Corporation, 21st Frontier research project (Sustainable Water Resources Research Center 3-4-3), Korea Research Foundation Grant funded by the Korean Government (KRF-D0028), and Global Research Laboratory project (Korea Institute of Geosciences and Mineral Resources NP2008-019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunjoon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Jung, W., Jeon, BH. et al. Abiotic subsurface behaviors of As(V) with Fe(II). Environ Geochem Health 33 (Suppl 1), 13–22 (2011). https://doi.org/10.1007/s10653-010-9360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-010-9360-4

Keywords

Navigation