Skip to main content

A comparative study on arsenic and humic substances in alluvial aquifers of Bengal delta plain (NW Bangladesh), Chianan plain (SW Taiwan) and Lanyang plain (NE Taiwan): implication of arsenic mobilization mechanisms

Abstract

Humic substances in groundwater and aquifer sediments from the arsenicosis and Blackfoot disease (BFD) affected areas in Bangladesh (Bengal delta plain) and Taiwan (Lanyang plain and Chianan plain) were characterized using fluorescence spectrophotometry and Fourier transform infrared (FT-IR) spectroscopy. The results demonstrate that the mean concentration of As and relative intensity of fluorescent humic substances are higher in the Chianan plain groundwater than those in the Lanyang plain and Bengal delta plain groundwater. The mean As concentrations in Bengal delta plain, Chianan plain, and Lanyang plain are 50.65 μg/l (2.8–170.8 μg/l, n = 20), 393 μg/l (9–704 μg/l, n = 5), and 104.5 μg/l (2.51–543 μg/l, n = 6), respectively. Average concentrations and relative fluorescent intensity of humic substances in groundwater are 25.381 QSU (quinine standard unit) and 17.78 in the Bengal delta plain, 184.032 QSU and 128.41 in the Chianan plain, and 77.56 QSU and 53.43 in the Lanyang plain. Moreover, FT-IR analysis shows that the humic substances extracted from the Chianan plain groundwater contain phenolic, alkanes, aromatic ring and amine groups, which tend to form metal carbon bonds with As and other trace elements. By contrast, the spectra show that humic substances are largely absent from sediments and groundwater in the Bengal delta plain and Lanyang plain. The data suggest that the reductive dissolution of As-adsorbed Mn oxyhydroxides is the most probable mechanism for mobilization of As in the Bengal delta plain. However, in the Chianan plain and Lanyang plain, microbially mediated reductive dissolution of As-adsorbed amorphous/crystalline Fe oxyhydroxides in organic-rich sediments is the primary mechanism for releasing As to groundwater. High levels of As and humic substances possibly play a critical role in causing the unique BFD in the Chianan plain of SW Taiwan.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., et al. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19, 181–200.

    Article  CAS  Google Scholar 

  2. Ahmed, K. M., & Burgess, W. G. (1995). Bils and Barind aquifer, Bangladesh. Chap. 8. In A. G. Brown (Ed.), Geomorphology and groundwater (pp. 143–155). New York: Wiley.

    Google Scholar 

  3. Allison, J. D., Brown, D. S., & Novo-Gradac, K. J. (1991). MINTEQA2, a geochemical assessment data base and test cases for environmental systems. Washington, DC: Environmental Protection Agency.

    Google Scholar 

  4. Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., et al. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: Sources and mobilization processes. Journal of Geochemical Exploration, 77, 109–131.

    Article  CAS  Google Scholar 

  5. Anawar, H. M., Akai, J., Mostofa, K. M. G., Safiullah, S., & Tareq, S. M. (2002). Arsenic poisoning in groundwater health risk and geochemical sources in Bangladesh. Environmental International, 27, 597–604.

    Article  CAS  Google Scholar 

  6. BGS and DPHE. (2001). Arsenic contamination of groundwater in Bangladesh, vol. 2. Final Report, BGS Technical Report WC/00/19.

  7. Bhattacharya, P. (2002). Arsenic contaminated groundwater from the sedimentary aquifers of South-East Asia. In: E. Bocanegra, D. Martínez, & H. Massone (Eds.), Groundwater and human development, Proceedings of XXXII IAH and VI ALHSUD Congress, Mar del Plata, Argentina, 21–25 October 2002, pp. 357–363.

  8. Chapelle, F. H., Zelibor, J. L., Jr, Grimes, D. J., & Knobel, L. L. (1987). Bacteria in deep coastal plain sediments of Maryland: A possible source of CO2 to groundwater. Water Resources Research, 23, 1625–1632.

    Article  CAS  Google Scholar 

  9. Chen, W. S. (2000). Analysis of sediments and sedimentary environments in stratigraphic correlation of the Lanyang Plain. Taipei: Taiwan Central Geological Survey Report, Taiwan (ROC) (in Chinese).

  10. Chen, S. L., Dzeng, S. R., Yang, M. H., Chiu, K. H., Shieh, G. M., & Wal, C. M. (1994). Arsenic species in groundwaters of the Blackfoot disease areas, Taiwan. Environmental Science and Technology, 28, 877–881.

    Article  CAS  Google Scholar 

  11. Chen, C. J., Hsueh, Y. M., Lai, M. S., Shyu, M. P., Chen, S. Y., Wu, M. M., et al. (1995a). Increased prevalence of hypertension and long-term arsenic exposure. Hypertension, 25, 53–60.

    Google Scholar 

  12. Chen, K.-Y., & Liu, T.-K. (2007). Major factors controlling arsenic occurrence in the groundwater and sediments of the Chianan coastal plain, SW Taiwan. Terrestrial Atmospheric and Oceanic Science, 18, 975–994.

    Article  Google Scholar 

  13. Chen, C. J., & Wang, C. J. (1990). Ecological correlation between arsenic levels in well water and aged-adjusted mortality from malignant neoplasms. Cancer Research, 50, 5470–5474.

    CAS  Google Scholar 

  14. Chen, S. L., Yeh, S. J., Yang, M. H., & Lin, T. H. (1995b). Trace element concentration and arsenic speciation in the well water of a Taiwan area with endemic Blackfoot disease. Biological Trace Element Research, 48, 263–274.

    Article  CAS  Google Scholar 

  15. Chiu, H. C., Shih, S. R., Lu, F. J., & Yang, H. L. (1993). Stimulation of endothelin production in cultured human endothelial cells by fluorescent compounds associated with Blackfoot disease. Thrombosis Research, 69, 139–151.

    Article  CAS  Google Scholar 

  16. Glynn, P. D., & Plummer, L. N. (2005). Geochemistry and the understanding of ground-water systems. Hydrogeology Journal, 13, 263–287.

    Article  CAS  Google Scholar 

  17. Han, B. C., Jeng, W. L., Chen, R. Y., Fang, G. T., Hung, T. C., & Tseng, R. J. (1998). Estimation of target hazard quotients and potential health risks for metals by consumption of seafood in Taiwan. Archives of Environmental Contamination and Toxicology, 35, 711–720.

    Article  CAS  Google Scholar 

  18. Hasan, M. A., Ahmed, K. M., Sracek, O., Bhattacharya, P., von Brömssen, M., Broms, S., et al. (2007). Arsenic in shallow groundwater of Bangladesh: Investigations from three different physiographic settings. Hydrogeology Journal, 15, 1507–1522.

    Article  CAS  Google Scholar 

  19. Hseu, Y. C., Chang, W. C., & Yang, H. L. (2001). Inhibition of human plasma activity using humic acids with arsenic. The Science of the Total Environment, 273, 93–99.

    Article  CAS  Google Scholar 

  20. Hsu, S. K. (1998). Plan for a groundwater monitoring network in Taiwan. Hydrogeology Journal, 6, 405–415.

    Article  Google Scholar 

  21. Huang, Y. K., Lin, K. H., Chen, H. W., Chang, C. C., Liu, C. W., Yang, M. H., et al. (2003). As species contents at aquaculture farm and in farmed mouthbreeder (Oreochromis mossambicus) in BFD hyperendemic areas. Food and Chemical Toxicology, 41, 1491–1500.

    Article  CAS  Google Scholar 

  22. Jang, C. S., Liu, C. W., Lin, K. H., Huang, F. M., & Wang, S. W. (2006). Spatial analysis of potential carcinogenic risks associated with ingesting arsenic in aquacultural tilpia (Oreochromis mossambicus) in Blackfoot disease hyperendemic areas. Environmental Science and Technology, 40, 1707–1713.

    Article  CAS  Google Scholar 

  23. Kuo, Z. B., & Chen, M. Z. (1969). A clinical therapy of Blackfoot disease. Journal of the Formosan Medical Association, 68, 275–289.

    CAS  Google Scholar 

  24. Kuwatsuka, S., Watanabe, A., Itoh, K., & Arai, S. (1992). Comparison of two methods of preparation of humic and fulvic acids, IHSS method and NAGOYA method. Soil Science and Plant Nutrition, 38, 23–30.

    CAS  Google Scholar 

  25. Lai, M. S., Hsueh, Y. M., Chen, C. J., Shyu, M. P., Chen, S. Y., Kuo, T. L., et al. (1994). Ingested inorganic arsenic and prevalence of diabetes mellitus. American Journal of Epidemiology, 139, 484–492.

    CAS  Google Scholar 

  26. Lee, M.-K., Saunders, J. A., Wilkin, R. T., & Mohammad, S. (2005) Geochemical modeling of arsenic speciation and mobilization: Implications for bioremediation. In P. O’Day et al. (eds.), Advances in arsenic research: Integration of experimental and observational studies and implications for mitigation (Vol. 915, pp. 398–413). American Chemical Society Symposium Series.

  27. Liao, C. M., & Ling, M. P. (2003). Assessment of human health risks for arsenic bioaccumulation in tilapia (Oreochromis mossambicus) and large-scale mullet (Liza macrolepis) from Blackfoot disease area in Taiwan. Archives of Environmental Contamination and Toxicology, 45, 264–272.

    Article  CAS  Google Scholar 

  28. Lin, H.-T., Wang, M. C., & Li, G.-C. (2004). Complexation of arsenate with humic substance in water extract of compost. Chemosphere, 56, 1105–1112.

    Article  CAS  Google Scholar 

  29. Liu, C. W., Huang, F. M., & Hsueh, Y. M. (2005). Revised cancer risk assessment of inorganic arsenic upon consumption of tilapia (Oreochromis mossambicus) from Blackfoot disease hyperendemic areas. Bulletin of Environmental Contamination and Toxicology, 74, 1037–1044.

    Article  CAS  Google Scholar 

  30. Lu, F. J. (1975). Physicochemical characteristics of drinking water in Blackfoot disease endemic areas in Chiai and Tainan Hsiens. Journal of the Formosan Medical Association, 74, 596–605.

    CAS  Google Scholar 

  31. Lu, F. J. (1990a). Review: Fluorescent humic substance and Blackfoot disease in Taiwan. Applied Organometallic Chemistry, 4, 191–195.

    Article  CAS  Google Scholar 

  32. Lu, F. J. (1990b). Blackfoot disease: Arsenic or humic acids? Lancet, 336, 115–116.

    Article  CAS  Google Scholar 

  33. Lu, F. J., Hsieh, H. P., Yamauchi, H., & Yamamura, Y. (1991). Fluorescent humic substances-arsenic complex in well water in areas where Blackfoot disease is endemic in Taiwan. Applied Organometallic Chemistry, 5, 507–512.

    Article  CAS  Google Scholar 

  34. Lu, F. J., Yamamura, Y., & Yamauchi, H. (1988). Studies on fluorescent compounds in water of a well in Blackfoot disease endemic areas in Taiwan: Humic substances. Journal of the Formosan Medical Association, 87, 66–75.

    CAS  Google Scholar 

  35. McArthur, J. M., Ravenscroft, P., Safiullah, S., & Thirlwall, M. F. (2001). Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research, 37, 109–117.

    Article  CAS  Google Scholar 

  36. Miano, T. M., & Senesi, N. (1992). Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry. Science of the Total Environment, 117(118), 41–51.

    Article  Google Scholar 

  37. Nagao, S., Matsunaga, T., Suzuki, Y., Ueno, T., & Amano, H. (2003). Characteristics of humic substances in the Kuji River waters as determined by high-performance size exclusion chromatography with fluorescence detection. Water Research, 37, 4159–4170.

    Article  CAS  Google Scholar 

  38. Nath, B., Jean, J.-S., Lee, M.-K., Yang, H.-J., & Liu, C.-H. (2008a). Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: Possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology, 99, 85–96.

    Article  CAS  Google Scholar 

  39. Nath, B., Stueben, D., Basu Mallik, S., Chatterjee, D., & Charlet, L. (2008b). Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part I: Comparative hydrochemical and hydrogeological characteristics. Applied Geochemistry, 23, 977–995.

    Article  CAS  Google Scholar 

  40. Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413.

    Article  CAS  Google Scholar 

  41. Niemayer, J., Chen, Y., & Bollag, J. M. (1992). Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transformed infrared spectroscopy. Soil Science Society of America Journal, 56, 135–140.

    Article  Google Scholar 

  42. Ohno, K., Furukawa, A., Hayashi, K., Kamei, T., & Magara, Y. (2005). Arsenic contamination of groundwater in Nawabganj, Bangladesh, focusing on the relationship with other metals and ions. Water Science and Technology, 52, 87–94.

    CAS  Google Scholar 

  43. Parkhurst, D. L., & Appelo, C. A. J. (1999). Users guide to PHREEQC (version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical modeling. US Geological Survey Water Resources Investigation Report, pp. 99–4259.

  44. Peng, T. R. (2001). Study of stable hydrogen and oxygen isotopes for groundwaters in Chianan Plain and Ilan Plain, Taiwan Groundwater Monitoring Network Project. Central Geological Survey, Ministry of Economic Affairs, Taiwan (in Chinese).

  45. Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M., & Fendorf, S. (2008). Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature, 454, 505–508.

    Article  CAS  Google Scholar 

  46. Redman, A. D., Macalady, D. L., & Ahmann, D. (2002). Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science and Technology, 36, 2889–2896.

    Article  CAS  Google Scholar 

  47. Reza, A. H. M. S., Jean, J.-S., Yang, H.-J., Lee, M.-K., Woodall, B., Liu, C.-C., et al. (2010). Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, Northwestern Bangladesh. Water Research, 44, 2021–2037.

    Article  Google Scholar 

  48. Saunders, J. A., Lee, M.-K., Uddin, A., Mohammad, S., Wilkin, R. T., Fayek, M., & Korte, N. E. (2005). Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic, weathering, and microbial processes. Geochemistry, Geophysics and Geosystems 6. doi: 10.1029/2004GC000803.

  49. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  50. Stollenwerk, K. G., Breit, G. N., Welch, A. H., Yount, J. C., Whitney, J. W., Foster, A. L., et al. (2007). Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Science of the Total Environment, 379, 133–150.

    Article  CAS  Google Scholar 

  51. Swartz, C. H., Blute, N. K., Badruzzman, B., Ali, A., Brabander, D., Jay, J., et al. (2004). Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data and mineralogical characterization. Geochimica et Cosmochimica Acta, 68, 4539–4557.

    Article  CAS  Google Scholar 

  52. Tang, J., Lin, N. F., Bian, J. M., Liu, W. Z., & Zhang, Z. L. (1996). Environmental geochemistry of arsenism areas in Hetao Plain, Inner Mongolia. Hydrogeology and Engineering Geology, 1, 49–54. (In Chinese with English abstract).

    Google Scholar 

  53. Thurman, E. M., & Malcolm, R. L. (1981). Preparative isolation of aquatic humic substances. American Chemical Society, 15, 463–466.

    CAS  Google Scholar 

  54. Tseng, W. P. (1977). Effects and dose–response relationship of skin cancer and Blackfoot disease with arsenic. Environmental Health Perspectives, 19, 109–119.

    CAS  Google Scholar 

  55. Tseng, W. P. (1985). Blackfoot disease and skin cancer in an endemic area of chronic arsenicism in Taiwan. In: Proceedings of the seminar on environmental toxicology, Taipei, 26 March–2 April, 1985, pp. 142–155.

  56. Tseng, W. P., Chen, W. Y., Sung, J. L., & Chen, J. S. (1961). A clinical study of Blackfoot disease in Taiwan, an endemic peripheral vascular disease (Vol. 7, pp. 1–18). Memoire College Med., National Taiwan University.

  57. Tseng, W. P., Chu, H. M., How, S. W., Fong, J. M., Lin, C. S., & Yeh, S. (1968). Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. Journal of the National Cancer Institute, 40, 453–463.

    CAS  Google Scholar 

  58. Wang, S. W., Liu, C. W., & Jang, C. S. (2007). Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Applied Geochemistry, 22, 460–476.

    Article  CAS  Google Scholar 

  59. Wu, M. M., Kuo, T. L., Hwang, Y. H., & Chen, C. J. (1989). Dose–response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. American Journal of Epidemiology, 130, 1123–1132.

    CAS  Google Scholar 

  60. Yang, H. L., Tu, S. C., Lu, F. J., & Chiu, H. C. (1994). Plasma protein C activity is enhanced by arsenic but inhibited by fluorescent humic acid associated with Blackfoot disease. American Journal of Hematology, 46, 264–269.

    Article  CAS  Google Scholar 

  61. Yu, X. (2001). Humic acids from endemic arsenicosis areas in Inner Mongolia and from the Blackfoot-disease areas in Taiwan: A comparative study. Environmental Geochemistry and Health, 23, 27–42.

    Article  CAS  Google Scholar 

  62. Yu, H. S., Sheu, H. M., Ko, S. S., Chiang, L. C., Chieh, C. H., Lin, S. M., et al. (1984). Studies on Blackfoot disease and chronic arsenism in southern Taiwan, with special reference to skin lesions and fluorescent substances. Journal of Dermatology, 11, 361–370.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Council of Taiwan for the financial support of this research (NSC96-2627-M-006-002).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiin-Shuh Jean.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Selim Reza, A.H.M., Jean, JS., Yang, HJ. et al. A comparative study on arsenic and humic substances in alluvial aquifers of Bengal delta plain (NW Bangladesh), Chianan plain (SW Taiwan) and Lanyang plain (NE Taiwan): implication of arsenic mobilization mechanisms. Environ Geochem Health 33, 235–258 (2011). https://doi.org/10.1007/s10653-010-9335-5

Download citation

Keywords

  • Arsenic
  • Alluvial aquifer
  • Humic substances
  • Blackfoot disease (BFD)
  • Arsenicosis
  • Bangladesh
  • Taiwan