Skip to main content

Advertisement

Log in

Arsenic contamination of natural waters in San Juan and La Pampa, Argentina

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Arsenic (As) speciation in surface and groundwater from two provinces in Argentina (San Juan and La Pampa) was investigated using solid phase extraction (SPE) cartridge methodology with comparison to total arsenic concentrations. A third province, Río Negro, was used as a control to the study. Strong cation exchange (SCX) and strong anion exchange (SAX) cartridges were utilised in series for the separation and preservation of arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MAV) and dimethylarsinic acid (DMAV). Samples were collected from a range of water outlets (rivers/streams, wells, untreated domestic taps, well water treatment works) to assess the relationship between total arsenic and arsenic species, water type and water parameters (pH, conductivity and total dissolved solids, TDS). Analysis of the waters for arsenic (total and species) was performed by inductively coupled plasma mass spectrometry (ICP-MS) in collision cell mode. Total arsenic concentrations in the surface and groundwater from Encon and the San José de Jáchal region of San Juan (north-west Argentina within the Cuyo region) ranged from 9 to 357 μg l−1 As. Groundwater from Eduardo Castex (EC) and Ingeniero Luiggi (LU) in La Pampa (central Argentina within the Chaco-Pampean Plain) ranged from 3 to 1326 μg l−1 As. The pH range for the provinces of San Juan (7.2–9.7) and La Pampa (7.0–9.9) are in agreement with other published literature. The highest total arsenic concentrations were found in La Pampa well waters (both rural farms and pre-treated urban sources), particularly where there was high pH (typically > 8.2), conductivity (>2,600 μS cm−1) and TDS (>1,400 mg l−1). Reverse osmosis (RO) treatment of well waters in La Pampa for domestic drinking water in EC and LU significantly reduced total arsenic concentrations from a range of 216–224 μg l−1 As to 0.3–0.8 μg l−1 As. Arsenic species for both provinces were predominantly AsIII and AsV. AsIII and AsV concentrations in San Juan ranged from 4–138 μg l−1 to <0.02–22 μg l−1 for surface waters (in the San José de Jáchal region) and 23–346 μg l−1 and 0.04–76 μg l−1 for groundwater, respectively. This translates to a relative AsIII abundance of 69–100% of the total arsenic in surface waters and 32–100% in groundwater. This is unexpected because it is typically thought that in oxidising conditions (surface waters), the dominant arsenic species is AsV. However, data from the SPE methodology suggests that AsIII is the prevalent species in San Juan, indicating a greater influence from reductive processes. La Pampa groundwater had AsIII and AsV concentrations of 5–1,332 μg l−1 and 0.09–592 μg l−1 for EC and 32–242 μg l−1 and 30–277 μg l−1 As for LU, respectively. Detectable levels of MAV were reported in both provinces up to a concentration of 79 μg l−1 (equating to up to 33% of the total arsenic). Previously published literature has focused primarily on the inorganic arsenic species, however this study highlights the potentially significant concentrations of organoarsenicals present in natural waters. The potential for separating and preserving individual arsenic species in the field to avoid transformation during transport to the laboratory, enabling an accurate assessment of in situ arsenic speciation in water supplies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abraham, E., del Valle, H. F., Roig, F., Torres, L., Ares, J. O., Coronato, F., et al. (2009). Overview of the geography of the Monte Desert biome (Argentina). Journal of the Arid Environments, 73, 144–153.

    Article  Google Scholar 

  • Adamo, S. B., & Crews-Meyer, K. A. (2006). Aridity and desertification: exploring environmental hazards in Jáchal, Argentina. Applied Geography, 26, 61–85.

    Article  Google Scholar 

  • Asante, K. A., Agusa, T., Subramanian, A., Ansa-Asare, O. D., Biney, C. A., & Tanabe, S. (2007). Contamination status of arsenic and other trace elements in drinking water and residents from Tarkwa, a historic mining township in Ghana. Chemosphere, 66, 1513–1522.

    Article  CAS  Google Scholar 

  • Ascar, L., Ahumada, I., & Richter, P. (2008). Influence of redox potential (Eh) on the availability of arsenic species in soils and soils amended with biosolid. Chemosphere, 72, 1548–1552.

    Article  CAS  Google Scholar 

  • Bates, M. N., Rey, O. A., Biggs, M. L., Hopenhayn, C., Moore, L. E., Kalman, D., et al. (2004). Case-control study of bladder cancer and exposure to arsenic in Argentina. American Journal of Epidemiology, 159, 381–389.

    Article  Google Scholar 

  • Bednar, A. J., Garbarino, J. R., Burkhardt, M. R., Ranville, J. F., & Wildeman, T. R. (2004). Field and laboratory arsenic speciation methods and their application to natural-water analysis. Water Research, 38, 355–364.

    Article  CAS  Google Scholar 

  • Bednar, A. J., Garbarino, J. R., Ranville, J. F., & Wildeman, T. R. (2002a). Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples. Environmental Science and Technology, 36, 2213–2218.

    Article  CAS  Google Scholar 

  • Bednar, A. J., Garbarino, J. R., Ranville, J. F., & Wildeman, T. R. (2002b). Presence of organoarsenicals used in cotton production in agricultural water and soil of the Southern United States. Journal of Agricultural and Food Chemistry, 50, 7340–7344.

    Article  CAS  Google Scholar 

  • Bertolino, S. R. A., Zimmermann, U., & Sattler, F. J. (2007). Mineralogy and geochemistry of bottom sediments from water reservoirs in the vicinity of Córdoba, Argentina: Environmental and health constraints. Applied Clay Science, 36, 206–220.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Claesson, M., Bundschuh, J., Sracek, O., Fagerberg, J., Jacks, G., et al. (2006). Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment, 358, 97–120.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M. J., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: biology and chemistry. Science of the Total Environment, 379, 109–120.

    Article  CAS  Google Scholar 

  • Bundschuh, J., Farias, B., Martin, R., Storniolo, A., Bhattacharya, P., Cortes, J., et al. (2004). Groundwater arsenic in the Chaco-Pampean Plain, Argentina: Case study from Robles County, Santiago del Estero Province. Applied Geochemistry, 19, 231–243.

    Article  CAS  Google Scholar 

  • Button, M., Jenkin, G. R. T., Harrington, C. F., & Watts, M. J. (2009). Human toenails as a biomarker of exposure to elevated environmental arsenic. Journal of Environmental Monitoring, 11, 610–617.

    Article  CAS  Google Scholar 

  • Cáceres, R. E., Aguirre, L. O., Rosas, E. O., & Segovia, R. F. (2005). Arsenic removal from water through pitting corrosion of a metallic iron fixed bed. In 2nd Mercosur congress on chemical engineering. 4th Mercosur congress on process systems engineering, pp. 1–9.

  • Chiou, J.-M., Wang, S.-L., Chen, C.-J., Deng, C.-R., Lin, W., & Tai, T.-Y. (2005). Arsenic ingestion and increase microvascular disease risk: Observations from the south-western arseniasis-endemic arsenic in Taiwan. International Journal of Epidemiology, 34, 936–943.

    Article  Google Scholar 

  • Choong, T. S. Y., Chuah, T. G., Robiah, Y., Koay, F. L. G., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination, 217, 139–166.

    Article  CAS  Google Scholar 

  • Chou, C.-H., & De Rosa, C. T. (2003). Case studies–arsenic. International Journal of Hygiene and Environmental Health, 206, 381–386.

    Article  Google Scholar 

  • Cowen, S., Megha, D., Tuan, H., & Al-Abadleh, H. A. (2008). Vibrational spectroscopic characterization of some environmentally important organoarsenicals—a guide for understanding the nature of their surface complexes. Canadian Journal of Chemistry, 86(10), 942–950.

    Article  CAS  Google Scholar 

  • Daus, B., Mattusch, J., Wennrich, R., & Weiss, H. (2002). Investigation on stability and preservation of arsenic species in iron rich water samples. Talanta, 58, 57–65.

    Article  CAS  Google Scholar 

  • de Salmuni, G., Valasco, I., Fresina, M., & Flores, A. L. (2007). Irrigated area determination: A case study in the Province of San Juan, Argentina. GeoJournal, 70, 273–279.

    Article  Google Scholar 

  • Deutsch, W. J. (1997). Practical applications: Metal contamination—arsenic. In W. J. Deutsch (Ed.), Groundwater geochemistry: Fundamentals and applications to contamination (p. 175). Florida: CRC Press.

    Google Scholar 

  • Dilks, C. (2004). San Juan Province. In C. Dilks (Ed.), Argentina (3rd ed., p. 208). Bath: Footprint Handbooks.

    Google Scholar 

  • DNGM (Direccion Nacional de Geologia y Mineria) (1964). Map geologica de la Republica Argentina, H8740 majari (1), ISBN X780636456.

  • Duker, A. A., Carranza, E. J. M., & Hale, M. (2005). Arsenic geochemistry and health. Environment International, 31, 631–641.

    Article  CAS  Google Scholar 

  • Edwards, M., Patel, S., McNeill, L., Chen, H.-W., Frey, M., Waton, A. D., et al. (1998). Considerations in as analysis and speciation. Journal—American Work Works Association, 90, 103–113.

    CAS  Google Scholar 

  • FAO. (1994). Water quality for agriculture, water quality for livestock and poultry, No. 6.

  • Farías, S. S., Casa, V. A., Vázquez, C., Ferpozzi, L., Pucci, G. N., & Cohen, I. M. (2003). Natural contamination with arsenic and other trace elements in ground waters of Argentine Pampean Plains. Science of the Total Environment, 309, 187–199.

    Article  Google Scholar 

  • Ferreccio, C., & Sancha, A. M. (2006). Arsenic exposure and its impact on health in Chile. Journal of Health, Population and Nutrition, 24, 164–175.

    Google Scholar 

  • Francesconi, K. A., & Kuehnelt, D. (2004). Determination of arsenic species: A critical review of methods and applications. Analyst, 129, 373–395.

    Article  CAS  Google Scholar 

  • Frisbie, S. H., Mitchell, E. J., Yusuf, A. Z., Siddiq, M. Y., Sanchez, R. E., Ortega, R., et al. (2005). The development and use of an innovative laboratory method for measuring arsenic in drinking water from Western Bangladesh. Environmental Health Perspectives, 113, 1196–1204.

    Article  CAS  Google Scholar 

  • Garbarino, J. R., Bednar, A. J., & Burkhardt, M. R. (2002). Methods of analysis by the US geological survey national water quality laboratory—arsenic speciation in natural-water samples using laboratory and field methods. US Geological Survey Water-Resources Investigations Report, 02–4144, 1–47.

    Google Scholar 

  • Gault, A. G., Islam, F. S., Polya, D. A., Charnock, J. M., Boothman, C., Chatterjee, D., et al. (2005a). Microcosm depth profiles of arsenic release in a shallow aquifer, West Bengal. Mineralogical Magazine, 69, 855–863.

    Article  CAS  Google Scholar 

  • Gault, A. G., Jana, J., Chakraborty, S., Mukherjee, P., Sarkar, M., Nath, B., et al. (2005b). Preservation of inorganic arsenic species in high iron, low-Eh groundwater from West Bengal, India. Analytical and Bioanalytical Chemistry, 381, 347–353.

    Article  CAS  Google Scholar 

  • Gomez, M. L., Blarasin, M. T., & Martínez, D. E. (2009). Arsenic and fluoride in a loess aquifer in the central area of Argentina. Environmental Geology, 57, 143–155.

    Article  CAS  Google Scholar 

  • Gong, Z., Lu, X., Ma, M., Watt, C., & Le, X. C. (2002). Arsenic speciation analysis. Talanta, 58, 77–96.

    Article  CAS  Google Scholar 

  • Halim, M. A., Majumder, R. K., Nessa, S. A., Hiroshiro, Y., Uddin, M. J., Shimada, J., et al. (2009). Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh. Journal of Hazardous Materials, 164, 1335–1345.

    Article  CAS  Google Scholar 

  • Hill, S. (2009). Boron toxicity in surface waters, soils and crop plants in an arid region of San Juan, Argentina: The relationship to human levels and health status. Ph.D. Thesis, Chemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, England.

  • Hopenhayn-Rich, C., Biggs, M. L., & Smith, A. H. (1998). Lung and kidney cancer mortality associated with arsenic in drinking water in Cordoba, Argentina. International Journal of Epidemiology, 27, 561–569.

    Article  CAS  Google Scholar 

  • Hossain, M. F. (2006). Arsenic contamination in Bangladesh—An overview. Agriculture, Ecosystems & Environment, 113, 1–16.

    Article  CAS  Google Scholar 

  • Hug, S. J., Canonica, L., Wegelin, M., Gechter, D., & Von Gunten, U. (2001). Solar oxidation and removal of arsenic and circum neutral pH in iron containing waters. Environmental Science and Technology, 35, 2114–2121.

    Article  CAS  Google Scholar 

  • Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 133, 1–16.

    Article  CAS  Google Scholar 

  • Impellitteri, C. A., & Scheckel, K. G. (2006). The distribution, solid-phase speciation, and desorption/dissolution of As in waste iron-based drinking water treatment residuals. Chemosphere, 64, 875–880.

    Article  CAS  Google Scholar 

  • Jenchen, U., & Rosenfeld, U. (2002). Continental triassic in Argentina: Response to tectonic activity. Journal of South American Earth Sciences, 15, 461–479.

    Article  Google Scholar 

  • Jong, T., & Parry, D. L. (2005). Evaluation of the stability of arsenic immobilised by microbial sulfate reduction using TCLP extractions and long-term leaching techniques. Chemosphere, 60, 254–265.

    Article  CAS  Google Scholar 

  • Kile, M. L., Houseman, A., Breton, C. V., Smith, T., Quamruzzaman, Q., Rahman, M., et al. (2007). Dietary arsenic exposure in Bangladesh. Environmental Health Perspectives, 115, 889–893.

    Article  CAS  Google Scholar 

  • Kinniburgh, D. G., & Kosmus, W. (2002). Arsenic contamination in groundwater: Some analytical considerations. Talanta, 58, 165–180.

    Article  CAS  Google Scholar 

  • Kumaresan, M., & Riyazuddin, P. (2001). Overview of speciation chemistry of arsenic. Current Science, 80, 837–846.

    CAS  Google Scholar 

  • Le, X. C., Yalçin, S., & Ma, M. S. (2000). Speciation of submicrogram per litre levels of arsenic in water—on-site species separation integrated with sample collection. Environmental Science and Technology, 34, 2342–2347.

    Article  CAS  Google Scholar 

  • Limarino, C., Tripaldi, A., Marenssi, S., & Fauqué, L. (2006). Tectonic, sea-level, and climatic controls on Late Paleozoic sedimentation in the western basins of Argentina. Journal of South American Earth Sciences, 22, 205–226.

    Article  Google Scholar 

  • Lloret, G., & Suvires, G. M. (2006). Groundwater basin of the Tulum Valley, San Juan, Argentina: A morphohydrogeologic analysis of its central sector. Journal of South American Earth Sciences, 21, 267–275.

    Article  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • McSheehy, S., Szpunar, J., Morabito, R., & Quevauviller, P. (2003). The speciation of arsenic in biological tissues and the certification of reference materials for quality control. Trends in Analytical Chemistry, 22(4), 191–209.

    Article  CAS  Google Scholar 

  • Meharg, A. A., Williams, P. N., Adomako, E., Lawgali, Y. Y., Deacon, C., Villada, A., et al. (2009). Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science and Technology, 43, 1612–1617.

    Article  CAS  Google Scholar 

  • Michelena, R. O., & Irurtia, C. B. (1995). Susceptibility of soil to wind erosion in La Pampa Province, Argentina. Arid Soil Research and Rehabilitation, 9, 227–234.

    Google Scholar 

  • Mondal, D., & Polya, D. A. (2008). Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: A probabilistic risk assessment. Applied Geochemistry, 23, 2987–2998.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Bhattacharya, P., Savage, K., Foster, A., & Bundschuh, J. (2008). Distribution of geogenic arsenic in hydrologic systems: Controls and challenges. Journal of Contaminant Hydrology, 99, 1–7.

    Article  CAS  Google Scholar 

  • Nath, B., Berner, Z., Chatterjee, D., Mallik, S. B., & Stüben, D. (2008). Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part II: Comparative geochemical profile and leaching study. Applied Geochemistry, 23, 996–1011.

    Article  CAS  Google Scholar 

  • Ng, J. C., Wang, J., & Shraim, A. (2003). A global health problem caused by arsenic from natural sources. Chemosphere, 52, 1353–1359.

    Article  CAS  Google Scholar 

  • Nguyen, V. A., Bang, S., Viet, P. H., & Kim, K.-W. (2009). Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province, Vietnam. Environment International, 35, 466–472.

    Article  CAS  Google Scholar 

  • Nicolli, H. B., Suriano, J. M., Gómez Peral, M. A., Ferpozzi, L. H., & Baleani, O. H. (1989). Groundwater contamination with arsenic and other trace-elements in an area of the Pampa, province of Córdoba, Argentina. Environmental Geology and Water Sciences, 14, 3–16.

    Article  CAS  Google Scholar 

  • Ning, Z., Lobdell, D. T., Kwok, R. K., Liu, Z., Zhang, S., Ma, C., et al. (2007). Residential exposure to drinking water arsenic in Inner Mongolia, China. Toxicology and Applied Pharmacology, 222, 351–356.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., Bhattacharya, P., Mukherjee, A. B., Bundschuh, J., Zevenhoven, R., & Loeppert, R. H. (2007). Arsenic in soil and groundwater: An overview. Trace Metals and other Contaminants in the Environment, 9, 3–60.

    Article  CAS  Google Scholar 

  • Ohno, K., Yanase, T., Matsuo, Y., Kimura, T., Rahman, M. H., Magara, Y., et al. (2007). Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh. Science of the Total Environment, 381, 68–76.

    Article  CAS  Google Scholar 

  • Oyarzun, R., Lillo, J., Higueras, P., Oyarzún, J., & Maturana, H. (2004). Strong arsenic enrichment in sediments from the Elqui watershed, Northern Chile: Industrial (gold mining at El Indio-Tambo district) vs. geologic processes. Journal of Geochemical Exploration, 84, 53–64.

    Article  CAS  Google Scholar 

  • Pandey, P. K., Yadav, S., Nair, S., & Pandey, M. (2004). Sampling and preservation artifacts in arsenic analysis: Implications for public health issues in developing countries. Current Science, 86, 1426–1432.

    CAS  Google Scholar 

  • Plant, J. A., Kinniburgh, D. G., Smedley, P. L., Fordyce, F. M., & Klinck, B. A. (2003). Arsenic and selenium. Treatise on Geochemistry, 9. In H. D. Holland, K. K. Turekian, & B. S. Lollar (Eds.), Environmental geochemistry (pp. 17–66). Amsterdam: Elsevier.

    Google Scholar 

  • Polizzotto, M. L., Harvey, C. F., Sutton, S. R., & Fendorf, S. (2005). Processes conductive to the release and transport of arsenic into aquifers of Bangladesh. Proceedings of the National Academy of Sciences, 102, 18819–18823.

    Article  CAS  Google Scholar 

  • Rawlins, B. G., Williams, T. M., Breward, N., Ferpozzi, L., Figueiredo, B., & Borba, R. (1997). Preliminary investigation of mining-related arsenic contamination in the provinces of Mendoza and San Juan (Argentina) and Minas Gerais State (Brazil). British Geological Survey Technical Report WC/97/60.

  • Roig-Navarro, A. F., Martinez-Bravo, Y., López, F. J., & Hernández, F. (2001). Simultaneous determination of arsenic species and chromium(VI) by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry. Journal of Chromatography, 912, 319–327.

    Article  CAS  Google Scholar 

  • Roychowdhury, T., Tokunaga, H., Uchino, T., & Ando, M. (2005). Effect of arsenic-contaminated irrigation water on agricultural land soil and plants in West Bengal, India. Chemosphere, 58, 799–810.

    Article  CAS  Google Scholar 

  • Scanlon, B. R., Nicot, J. P., Reedy, R. C., Kurtzman, D., Mukherjee, A., & Nordstrom, D. K. (2009). Elevated naturally occurring arsenic in a semiarid oxidising system, Southern High Plains aquifer, Texas, USA. Applied Geochemistry, 24, 2061–2071.

    Article  CAS  Google Scholar 

  • Schreiber, M. E., Simo, J. A., & Freiberg, P. G. (2000). Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA. Journal of Hydrogeology, 8, 161–176.

    Article  CAS  Google Scholar 

  • Sharpless, C. M., & Linden, K. G. (2001). UV photolysis of nitrate—effects of natural matter and dissolved inorganic carbon and implications for UV water disinfection. Environmental Science and Technology, 35, 2949–2955.

    Article  CAS  Google Scholar 

  • Sigrist, M. E., & Beldoménico, H. R. (2004). Determination of inorganic arsenic species by flow injection hydride generation atomic absorption spectrometry with variable sodium tetrahydroborate concentrations. Spectrochimica Acta Part B, 59, 1041–1045.

    Article  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smedley, P. L., Kinniburgh, D. G., Macdonald, D. M. J., Nicolli, H. B., Barros, A. J., Tullio, J. O., et al. (2005). Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry, 20, 989–1016.

    Article  CAS  Google Scholar 

  • Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., Barros, A. J., & Tullio, J. O. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17, 259–284.

    Article  CAS  Google Scholar 

  • Smith, N. M., Lee, R., Heitkemper, D. T., Denicola Cafferky, K., Haque, A., & Henderson, A. K. (2006). Inorganic arsenic in cooked rice and vegetables from Bangladeshi households. Science of the Total Environment, 370, 294–301.

    Article  CAS  Google Scholar 

  • Smith, E., Naidu, R., & Alston, A. M. (2002). Heavy metals in the environment. Chemistry of inorganic arsenic in soils: II. Effects of phosphorus, sodium, and calcium on arsenic sorption. Journal of Environmental Quality, 31, 557–563.

    Article  CAS  Google Scholar 

  • Steinmaus, C., Bates, M. N., Yuan, Y., Kalman, D., Atallah, R., Rey, O. A., et al. (2006). Arsenic methylation and bladder cancer risk in case-control studies in Argentina and the United States. Journal of Occupational and Environmental Medicine, 48, 478–488.

    Article  CAS  Google Scholar 

  • Suzuki, K. T. (2005). Speciation of arsenic in biological samples. Analytica Chimica Acta, 540, 71–76.

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Patlolla, A. K., & Centeno, J. A. (2003). Carcinogenic and systemic health effects associated with arsenic exposure—A critical review. Toxicologic Pathology, 31, 575–588.

    CAS  Google Scholar 

  • Tseng, C.-H. (2009). A review on environmental factors regulating arsenic methylation in humans. Toxicology and Applied Pharmacology, 235, 338–350.

    Article  CAS  Google Scholar 

  • Vaclavikova, M., Gallios, G. P., Hredzak, S., & Jakabsky, S. (2008). Removal of arsenic from water streams: An overview of available techniques. Clean Technologies and Environmental Policy, 10(1), 89–95.

    Article  CAS  Google Scholar 

  • Verplanck, P. L., Mueller, S. H., Goldfarb, R. J., Nordstrom, D. K., & Youcha, E. K. (2008). Geochemical controls of elevated arsenic concentrations in groundwater, Ester Dome, Fairbanks district, Alaska. Chemical Geology, 255, 160–172.

    Article  CAS  Google Scholar 

  • Wang, C.-H., Jeng, J.-S., Yip, P.-K., Chen, C.-L., Hsu, L.-I., Hsueh, Y.-M., et al. (2002). Biological gradient between long-term arsenic exposure and carotid atherosclerosis. Circulation, 105, 1804–1809.

    Article  CAS  Google Scholar 

  • Wang, S., & Mulligan, C. N. (2006). Occurrence of arsenic contamination in Canada: Sources, behaviour and distribution. Science of the Total Environment, 366, 701–721.

    Article  CAS  Google Scholar 

  • Watts, M. J., O’Reilly, J., Marcilla, A., Shaw, R. A., & Ward, N. I. (2010). Field based speciation of arsenic in UK and Argentinean water samples. Environmental Geochemistry and Health (this issue). doi:10.1007/s10653-010-9321-y.

  • Watts, M. J., O’Reilly, J., Smiles, C. A., & Cook, J. M. (2007). Measurement of arsenic compounds in water by HPLC-ICP-MS. British Geological Survey Internal Report, OR/07/021.

  • WHO. (1993). Guidelines for drinking—Water quality, volume 1, recommendations (2nd ed.). Geneva: World Health Organisation.

    Google Scholar 

  • WHO. (2001). Environmental health criteria 224: Arsenic and arsenic compounds (2nd ed.). Geneva: World Health Organisation.

    Google Scholar 

  • Williams, M. (2001). Arsenic in mine waters: An international study. Environmental Geology, 40, 267–278.

    Article  CAS  Google Scholar 

  • Zárate, M. A. (2003). Loess of southern South America. Quaternary Science Reviews, 22, 1987–2006.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the British Geological Survey University Funding Initiative (BUFI) and the EPRSC for providing funding for this research as part of a PhD studentship. We are also grateful to the contribution from Mr Adrian Brizio (Cospec, Eduardo Castex) and Mr Adrian Fenocchio (Copeospil Ltda, Ingeniero Luiggi) for their invaluable assistance in the collection of water samples from La Pampa. Thanks must also go to Dr Louise Ander for reviewing the manuscript and Mr Paul Lappage for creating the illustrated map of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Reilly, J., Watts, M.J., Shaw, R.A. et al. Arsenic contamination of natural waters in San Juan and La Pampa, Argentina. Environ Geochem Health 32, 491–515 (2010). https://doi.org/10.1007/s10653-010-9317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-010-9317-7

Keywords

Navigation