Skip to main content

Geochemical provenance and spatial distribution of fluoride in groundwater of Mayo Tsanaga River Basin, Far North Region, Cameroon: implications for incidence of fluorosis and optimal consumption dose

Abstract

The 500,000 inhabitants of Mayo Tsanaga River Basin are vulnerable to a “silent” fluorosis from groundwater consumption. For the first time, the groundwater is investigated for the purpose of identifying the provenance of fluoride and estimating an optimal dose of fluoride in the study area. Based on the fluoride content of groundwater, fluorine and major oxides abundances in rocks from the study area, mean annual atmospheric temperature, and on-site diagnosis of fluorosis in children, the following results and conclusions are obtained: Fluoride concentration in groundwater ranges from 0.19 to 15.2 mg/l. Samples with fluoride content of <1.5 mg/l show Ca–HCO3 signatures, while those with fluoride >1.5 mg/l show a tendency towards Na-HCO3 type. Fluor-apatite and micas in the granites were identified as the main provenance of fluoride in the groundwater through water-rock interactions in an alkaline medium. The optimal fluoride dose in drinking water of the study area should be 0.7 mg/l, and could be adjusted downward to a level of 0.6 mg/l due to the high consumption rate of groundwater, especially during drier periods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Amar, M., & Chawki, S. F. (2007). Fluoride content in groundwaters and the main consumed food (Dates and Tea) in South Algerian region. Online Journal of Earth Sciences, 1(2), 70–75.

    Google Scholar 

  • Apambire, W. B., Boyle, D. R., & Michel, F. A. (1997). Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper region of Ghana. Environmental Geology, 31(1), 13–24. doi:10.1007/s002540050221.

    Article  Google Scholar 

  • APHA-AWWA-WPCP. (1971). Standard methods for the examination of water and waste water, 13th edn. Washington, DC

  • Bernestine, D. M., Sadowsky, N., Hegsted, D. M., Giri, C. D., & Stare, F. J. (1960). Prevalence of osteoporosis in high and low fluoride areas in North Dakota. Journal of the American Medical Association, 498, 499–504.

    Google Scholar 

  • Boyle, D. R. (1992). Effect of base exchange softening on fluoride uptake in groundwaters of the Moncton sub-basin, New Brunkswick, Canada. In W. B. Apambire, D. R. Boyle, F. A. Michel (1997). Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper region of Ghana. Environmental Geology, 31(1), 13–24.

    Google Scholar 

  • Boyle, D. R., & Changnon, M. (1995). An incidence of skeletal fluorosis associated with groundwaters of the maritime Carboniferous basin, Gaspe region, Quebec, Canada. Environmental Geochemistry and Health, 17, 5–12. doi:10.1007/BF00188625.

    Article  CAS  Google Scholar 

  • Brouwer, I. D., Backer, D. O., DeBruin, A., & Hautvast, J. G. A. J. (1988). Unsuitability of WHO guidelines for fluoride concentration in drinking water in Senegal. Lancet, 30, 223–225. doi:10.1016/S0140-6736(88)91073-2.

    Article  Google Scholar 

  • Bryce Smith, D. (1979). Lead pollution, a growing hazard to public health. Chemistry in Britain, 7(2), 54–56.

    Google Scholar 

  • Chae, G. T., Yun, S. T., Kim, K., & Mayer, B. (2006a). Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water-rock interaction and hydrologic mixing. Journal of Hydrology (Amsterdam), 43, 321–326.

    Google Scholar 

  • Chae, G. T., Yun, S. T., Kwon, M. J., Kim, S. Y., & Mayer, B. (2006b). Batch dissolution of granite and biotite in water: implication for fluorine geochemistry in groundwater. Geochemical Journal, 40, 95–102. doi:10.2343/geochemj.40.95.

    Article  CAS  Google Scholar 

  • Chae, G. T., Yun, S. T., Mayer, B., Kim, K. H., Kim, S. Y., Kwon, J. S., et al. (2007). Fluorine geochemistry in bedrock groundwater of South Korea. The Science of the Total Environment, 385, 272–283. doi:10.1016/j.scitotenv.2007.06.038.

    Article  CAS  Google Scholar 

  • Dissanayake, C. B. (1991). The fluoride problem in the groundwater of Sri-Lanka-environmental management and health. The International Journal of Environmental Studies, 38, 137–156. doi:10.1080/00207239108710658.

    Article  CAS  Google Scholar 

  • Dolejs, D., & Baker, D. R. (2004). Thermodynamic analyses of the Na2O–K2O-CaO-Al2O3-SiO2–H2O-F2O–1 System: stability of fluorine–bearing minerals in felsic igneous suites. Contributions to Mineralogy and Petrology, 146(6), 762–778. doi:10.1007/s00410-003-0533-3.

    Article  CAS  Google Scholar 

  • Edmunds, W. M. (1994). Characterization of groundwaters in semi-arid and arid zones using minor elements. In H. Nash & G. J. H. Mccall (Eds.), Groundwater quality (pp. 19–30). New York: Chapman and Hall.

    Google Scholar 

  • Edmunds, W. M., & Smedley, P. L. (2005). Fluoride in natural waters. In O. Selinus (Ed.), Essentials of medical geology (pp. 301–329). Burlington, MA: Elsevier Academic Press.

    Google Scholar 

  • Fantong, W. Y., Satake, H., Aka, F. T., Ayonghe, S. N., Asai, K., Mandal, A., & Ako, A. A. (2009). Hydrochemical and isotopic evidence of recharge, apparent age, and flow direction of groundwater in Mayo Tsanaga River Basin, Cameroon: bearings on contamination. Environmental geology. doi:10.1007/s12665-009-0173-7 .

  • Fantong, W. Y., Satake, H., Ayonghe, S. N., Aka, F. T., & Asai, K. (2008). Hydrogeochemical controls and usability of groundwater in semi-arid Mayo Tsanaga River Basin, Far North Province, Cameroon. Environmental Earth Science doi:10.1007/s00254-008-1629-x. http://www.citeulike.org/journal/springerlink-100512.

  • Faure, G. (1991). Principles and applications of inorganic geochemistry. USA: Macmillan Publishing Company. New York. 626 pp.

    Google Scholar 

  • Gaciri, S. J., & Davies, T. C. (1993). The occurrence and geochemistry of fluoride in some natural waters of Kenya. Journal of Hydrology (Amsterdam), 143, 395–412. doi:10.1016/0022-1694(93)90201-J.

    Article  CAS  Google Scholar 

  • Gallagan, D. J., & Vermillion, J. R. (1957). Determining optimum fluoride concentrations. Public Health Reports, 72, 491–493.

    Google Scholar 

  • Hamamoto, E. (1957). On bone changes observed in residents of a high fluorine zone. In S. Utzino (Ed.), Medico-dental researches on fluorides (pp. 118–130). Tokyo: Japan Society for the Promotion of Science.

    Google Scholar 

  • Handa, B. K. (1975). Geochemistry and genesis of fluoride containing groundwater in India. Groundwater, 13(3), 275–281.

    CAS  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. 3rd edn. U.S. Geological Survey Water-Supply Paper, 2254, 363.

    Google Scholar 

  • Indian Academy of Geoscience. (1977). Proceedings of the symposium on fluorosis (534 p.). Hyderabad: Indian Academy of Geoscience.

  • Kainosho, H., Takeda, T., Tokunaga, T., Takizawa, S., Hayashi, T., Murakami, M., Mogi, K. (2008). Fluoride contamination process in groundwater, Lamphun City, northern Thailand. Proceedings of 36th IAH Congress, October, 2008 Toyama, Japan. Integrating groundwater science and human well-being.

  • Kim, K., & Jeong, G. Y. (2005). Factors influencing natural occurrence of fluoride-rich groundwaters: a case study in the southeastern part of the Korean Peninsula. Chemosphere, 58, 1399–1408. doi:10.1016/j.chemosphere.2004.10.002.

    Article  CAS  Google Scholar 

  • Krainov, S. R., Rubeikan, V. Z., Kapranov, S. D., & Petrova, N. G. (1969). Highly alkaline (pH 12) fluosilicate waters in the deeper zones of the Lovozero massif. Geochemistry International, 6, 635–640.

    Google Scholar 

  • Lamotte, M., Braund, A., Ohnenstetter, D., Ildefonse, P., & Pedro, G. (1996). Ahard sandy loam soil from semi-arid northern Cameroon: II. Geochemistry and mineralogy of bonding agent. European Journal of Soil Science, 48, 227–237. doi:10.1111/j.1365-2389.1997.tb00543.x.

    Article  Google Scholar 

  • Li, Z., Tainosho, Y., Shiraishi, K., & Owanda, M. (2003). Chemical characteristics of fluorine-bearing biotite of early Paleozoic plutonic rocks from the Sor Rondane Mountains, East Antarctica. Geochemical Journal, 37(2), 145–161.

    CAS  Google Scholar 

  • Mahvi, A. H., Zazoli, M. A., Younecian, M., Nicpour, B., Babapour, A. (2006). Survey of fluoride concentration in drinking water sources and prevalence of DMFT in the 12-year-old students in Behsher City.

  • Manji, F., Baelum, V., & Fejerskov, O. (1986). Dental fluorosis in an area of Kenya with 2 mg/l fluoride in drinking water. Journal of Dental Research, 65, 659–662.

    CAS  Google Scholar 

  • Martin, D., Sieffermann, G., & Vallerie, M. (1966). Les sols rouges du Nord-Cameroon. Cah. ORSTOM. Series of Pedology, IV(3), 3–28.

    Google Scholar 

  • McEachern, S. (2003). Processes of montagnard ethnogenesis in the northern Mandaras Mountains, Cameroon. PhD Thesis, p. 433. Canada: University of Calgary. ISBN 0-9544730-1-9. Mandaras Publishing.

  • Muller, W. J., Heath, R. G. M., & Villet, M. H. (1998). Finding the optimum: fluoridation of potable water in South Africa. Water SA, 24(1), 21–27.

    CAS  Google Scholar 

  • Nagadu, B., Koeberl, C., & Kurat, G. (2003). Petrography and geochemistry of the Singo granite, Uganda, and implications for its origin. Journal of African Earth Sciences, 36, 73–87. doi:10.1016/S0899-5362(03)00014-9.

    Article  Google Scholar 

  • Ngako, V., Njonfang, E., Aka, F. T., Affaton, P., & Nnange, J. M. (2006). The north–south Paleozoic to Quaternary trend of alkaline magmatism from Niger-Nigeria to Cameroon: complex interaction between hotspots and Precambrian faults. Journal of African Earth Sciences, 45, 241–256. doi:10.1016/j.jafrearsci.2006.03.003.

    Article  Google Scholar 

  • Nouvelot, J. F. (1972). Hydrologie des Mayos du Nord Cameroun. Monographie de la Tsanaga. Rapport Terminal. ORSTOM (pp. 117).

  • Oruc, N. (2008). Occurrence and problems of high fluoride waters in Turkey: an Overview. Environmental Geochemistry and Health, 30, 315–323. doi:10.1007/s10653-008-9160-2.

    Article  CAS  Google Scholar 

  • Ozsvath, D. L. (2009). Fluoride and environmental health: a review. Reviews in Environmental Science and Biotechnology, 8(1), 59–79. doi:10.1007/s11157-008-9136-9.

  • Peronne, Y., & Dumort, J. C. (1968). Carte geologigue de reconnaissance de La Republique Federale Du Cameroon. Feuille No: NC 33 NO E62. Maroua.

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analyses. American Geophysical Union Transactions, 25, 914–923.

    Google Scholar 

  • Rafique, T., Naseem, S., Bhanger, M. I., & Usmani, T. H. (2008). Fluoride ion contamination in the groundwater of Mithi sub-district, the Thar Desert, Pakistan. Environmental Geology, 56, 317–326. doi:10.1007/s00254-007-1167-y.

    Article  CAS  Google Scholar 

  • Satake, H., Kita, Y., Hayashi, H., & Murata, M. (2007). Geochemical investigation around the Mozumi-Sukenobe Fault survey Tunnel. In M. Ando (Ed.), Geodynamics of Atotsugawa Fault System (pp. 1–26).

  • Saxena, V., & Ahmed, S. (2001). Dissolution of fluoride in groundwater: a water–rock interaction study. Environmental Geology, 40, 1084–1087. doi:10.1007/s002540100290.

    Article  CAS  Google Scholar 

  • Saxena, V., & Ahmed, S. (2003). Inferring chemical parameters for the dissolution of fluoride in groundwater. Environmental Geology, 43(6), 731–736.

    CAS  Google Scholar 

  • Scaillet, B., & Macdonald, R. (2004). Fluorite stability in silicic magmas. Contributions to Mineralogy and Petrology, 147(3), 319–329. doi:10.1007/s00410-004-0559-1.

    Article  CAS  Google Scholar 

  • Schwinn, G., & Markl, G. (2005). REE systematic in hydrothermal fluorite. Chemical Geology, 216, 225–248. doi:10.1016/j.chemgeo.2004.11.012.

    Article  CAS  Google Scholar 

  • Smedly, P. L., Nicolli, H. B., Macdonald, D. M. J., Barros, A. J., & Tullio, J. O. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwater from La Pampa, Argentina. Applied Geochemistry, 17(3), 259–284. doi:10.1016/S0883-2927(01)00082-8.

    Article  Google Scholar 

  • Smet, J. (1992). Fluoride in drinking water. In J. E. Frencken (Ed.), Endemic fluorosis in developing countries. Report of a symposium held in Delft, Netherlands, April 27th 1990 (pp. 10–19). Leiden: TNO Institute for Preventive Health Care.

    Google Scholar 

  • Sreedevi, P. D., Ahmed, S., Made, B., Ledoux, E., & Gandolfi, J. M. (2006). Association of hydrogeological factors in temporal variations of fluoride concentration in crystalline aquifer in India. Environmental Geology, 50, 1–11. doi:10.1007/s00254-005-0167-z.

    Article  CAS  Google Scholar 

  • Subba Rao, N. (2003). Groundwater quality: focus on fluoride concentration in rural parts of Guntur district, Andhra Pradesh, India. Hydrological Sciences Journal, 48(5), 835–847. doi:10.1623/hysj.48.5.835.51449.

    Article  Google Scholar 

  • Subba Rao, N., & Devadas, D. J. (2003). Fluoride incidence in groundwater in an area of Peninsula India. Environmental Geology, 45, 243–251. doi:10.1007/s00254-003-0873-3.

    Article  Google Scholar 

  • Suh, C. E. (1997). Structural, geochemical and fluid-rock interaction study of uranium mineralization in northeastern Nigeria: implication for uranium metallogenesis and exploration. PhD Thesis. Nigeria, Abubaka Tafawa-Balewa University. p. 221.

  • Suh, C. E., & Dada, S. S. (1997). Fault rocks and differential reactivity of minerals in the Kanawa Violaine uraniferous vein, NE Nigeria. Journal of Structural Geology, 19(8), 1037–1044. doi:10.1016/S0191-8141(97)00010-2.

    Article  Google Scholar 

  • Taylor, R. P., & Fallick, A. E. (1997). The evolution of fluorine–rich felsic magmas: source dichotomy, magmatic convergence and the origins of Topaz Granite. Terra Nova, 9(3), 105–108.

    Google Scholar 

  • UNDP. (1975). Recherche et exploitation pilote d’eaux souterraines dans le Nord Cameroun. Rapport final. Annexe technique No. 1-5. Rome, Italia: HYDROGEO.

  • WHO. (1984). Guidelines for drinking water quality. Geneva: World Health Organization.

    Google Scholar 

  • WHO. (1994). Fluoride and oral health. Geneva: WHO Tech Rep Ser 846.

    Google Scholar 

  • Xiaolin, X., & Zhenhua, Z. (1998). Partitioning of F between aqueous fluids and albite melt and its petrogenetic and metallogenetic significance. Chinese Journal of Geochemistry, 17(4), 303–310.

    Article  Google Scholar 

  • Yong, L., & Hua, Z. W. (1991). Environmental characteristics of regional groundwater in relation to fluoride poisoning in North China. Environmental Geology and Water Sciences, 18, 3–10. doi:10.1007/BF01704572.

    Article  Google Scholar 

Download references

Acknowledgments

This paper is part of a PhD work by FWY, who is supported by a scholarship from MEXT (The Japanese Ministry of Education, Science, Sports and Culture). Material support was also provided by a Grant-in-aid for scientific research No. 20-626 from Sasagawa foundation, Japan. Thanks to Prof. Minoru Kusakabe and the reviewers for their comments that improved the quality of this paper. We are grateful to Professor Ujike and Prof. Otto at the Department of Earth science, University of Toyama, for their assistance during the preparation of the thin sections, XRF analyses and interpretation of the micrographs. The administrative support from the Cameroon Government through IRGM, Yaounde is acknowledged. The continuous assistance from members of the Laboratory of Environmental Biology and Chemistry, at the University of Toyama, during sampling, analyses, and documentation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson Y. Fantong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fantong, W.Y., Satake, H., Ayonghe, S.N. et al. Geochemical provenance and spatial distribution of fluoride in groundwater of Mayo Tsanaga River Basin, Far North Region, Cameroon: implications for incidence of fluorosis and optimal consumption dose. Environ Geochem Health 32, 147–163 (2010). https://doi.org/10.1007/s10653-009-9271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-009-9271-4

Keywords

  • Groundwater
  • Fluoride provenance
  • Optimal dose
  • Fluorosis
  • Mayo Tsanaga River Basin