Skip to main content

Increasing polybrominated diphenyl ether (PBDE) contamination in sediment cores from the inner Clyde Estuary, UK

Abstract

The concentrations of 16 polybrominated diphenyl ether (PBDE) congeners in six short sediment cores from the Clyde Estuary were determined by gas-chromatography mass-spectrometry. Total PBDE concentrations ranged from 1 to 2,645 μg/kg and the average concentration was 287 μg/kg. BDE-209 was the main congener and varied from 1 to 2,337 μg/kg. Elevated total PBDE concentrations were observed close to the sediment surface in the uppermost 10 cm of four of the six sediment cores. Comparison of the down core PBDE profiles revealed that the increase was driven by the accumulation of deca-BDE. Although the deca-BDE mix was dominant, the presence of lower molecular weight congeners BDE-47, BDE-99, BDE-183 and BDE-153 at most sediment intervals suggested additional sources of penta-BDE and octa-BDE pollution. Changing PBDE source input was the major factor in influencing the proportion of nona-brominated congeners, although other explanations such as post burial photo-debromination of BDE-209 cannot be entirely discounted. A clear cascading to lower hepta-, hexa-, and penta-homologues was not found. The increase in total PBDE concentrations and particularly the deca-BDE may possibly be ascribed to the use and subsequent disposal of electrical appliances such as televisions and computers. In the Clyde sediments, the proportion of nona-brominated congeners was higher than that reported for commercial mixtures. This might be due to changing sources of PBDEs or post burial photo-debromination of BDE-209.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alaee, M., Arias, P., Sjödin, A., & Bergman, Å. (2003). An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment International, 29, 683–689. doi:10.1016/S0160-4120(03)00121-1.

    Article  CAS  Google Scholar 

  • Alcock, R., Johnston, A. E., McGrath, S. P., Berrow, M. L., & Jones, K. C. (1993). Long-term changes in the polychlorinated biphenyl content of United Kingdom soils. Environmental Science and Technology, 27, 1918–1923. doi:10.1021/es00046a022.

    Article  CAS  Google Scholar 

  • Allchin, C. R., Law, R. J., & Morris, S. (1999). Polybrominated diphenylethers in sediments and biota downstream of potential sources in the UK. Environmental Pollution, 105, 197–207. doi:10.1016/S0269-7491(98)00219-X.

    Article  CAS  Google Scholar 

  • Hale, R. C., La Guardia, M. J., Harvey, E. P., Gaylor, M. O., Mainor, T. M., & Duff, W. H. (2001). Flame retardants—persistent pollutants in land-applied sludges. Nature, 412, 140–141. doi:10.1038/35084130.

    Article  CAS  Google Scholar 

  • Harrad, S., Ibarra, C., Diamond, M., Melymuk, L., Robson, M., Douwes, J., et al. (2008). Polybrominated diphenyl ethers in domestic indoor dust from Canada, New Zealand, United Kingdom and United States. Environment International, 34, 232–238. doi:10.1016/j.envint.2007.08.008.

    Article  CAS  Google Scholar 

  • Hassanin, A., Breivik, K., Meijer, S. N., Steinnes, E., Thomas, G. O., & Jones, K. C. (2004). PBDEs in European background soils: Levels and factors controlling their distribution. Environmental Science and Technology, 38, 738–745. doi:10.1021/es035008y.

    Article  CAS  Google Scholar 

  • Hoh, E., & Hites, R. A. (2005). Brominated flame retardants in the atmosphere of East-Central United States. Environmental Science and Technology, 39, 7794–7802. doi:10.1021/es050718k.

    Article  CAS  Google Scholar 

  • Klamer, H. J. C., Leonards, P. E. G., Lamoree, M. H., Villerius, L. A., Akerman, J. E., & Bakker, J. F. (2005). A chemical and toxicological profile of Dutch North Sea surface sediments. Chemosphere, 58, 1579–1587. doi:10.1016/j.chemosphere.2004.11.027.

    Article  CAS  Google Scholar 

  • Law, R. J., Allchin, C. R., de Boer, J., Covaci, A., Herzke, D., Lepom, P., et al. (2006). Levels and trends of brominated flame retardants in the European environment. Chemosphere, 64, 187–208. doi:10.1016/j.chemosphere.2005.12.007.

    Article  CAS  Google Scholar 

  • Mai, B. X., Chen, S. J., Luo, X. J., Chen, L. G., Yang, Q. S., Sheng, G. Y., et al. (2005). Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea. Environmental Science and Technology, 39, 3521–3527. doi:10.1021/es048083x.

    Article  CAS  Google Scholar 

  • Rahman, F., Langford, K. H., Scrimshaw, M. D., & Lester, J. N. (2001). Polybrominated diphenyl ether (PBDE) flame retardants. The Science of the Total Environment, 275, 1–17. doi:10.1016/S0048-9697(01)00852-X.

    Article  CAS  Google Scholar 

  • Rost, H., Loibner, A. P., Hasinger, M., Braum, R., & Szolar, O. H. J. (2002). Behaviour of PAHs during cold storage of historically contaminated soil samples. Chemosphere, 49, 1239–1246. doi:10.1016/S0045-6535(02)00497-6.

    Article  CAS  Google Scholar 

  • Soderstrom, G., Sellstrom, U., De Wit, C. A., & Tysklind, M. (2004). Photolytic debromination of decabromodiphenyl ether (BDE 209). Environmental Science and Technology, 38, 127–132. doi:10.1021/es034682c.

    Article  Google Scholar 

  • Talsness, C. E. (2008). Overview of toxicological aspects of polybrominated diphenyl ethers: A flame-retardant additive in several consumer products. Environmental Research, 108, 158–167. doi:10.1016/j.envres.2008.08.008.

    Article  CAS  Google Scholar 

  • Vane, C. H., Harrison, I., & Kim, A. W. (2007a). Assessment of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface sediments of the inner Clyde estuary, UK. Marine Pollution Bulletin, 54, 1301–1306. doi:10.1016/j.marpolbul.2007.04.005.

    Article  CAS  Google Scholar 

  • Vane, C. H., Harrison, I., & Kim, A. W. (2007b). Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediments from the Mersey estuary, UK. The Science of the Total Environment, 374, 112–126. doi:10.1016/j.scitotenv.2006.12.036.

    Article  CAS  Google Scholar 

  • Wang, Y., Jiang, G., Lam, P. K. S., & Li, A. (2007). Polybrominated diphenyl ether in the East Asian environment: A critical review. Environment International, 33, 963–973. doi:10.1016/j.envint.2007.03.016.

    Article  Google Scholar 

  • Webster, L., Russell, M., Adefehinti, F., Dalgarno, E. J., & Moffat, C. F. (2008). Preliminary assessment of polybrominated diphenyl ethers (PBDEs) in the Scottish aquatic environment, including the firth of Clyde. Journal of Environmental Monitoring, 10, 463–473. doi:10.1039/b718687h.

    Article  CAS  Google Scholar 

  • Zegers, B. N., Lewis, W. E., Booij, K., Smittenberg, R. H., Boer, W., De Boer, J., et al. (2003). Levels of polybrominated diphenyl ether flame retardants in sediment cores from Western Europe. Environmental Science and Technology, 37, 3803–3807. doi:10.1021/es034226o.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sincere appreciation is expressed to the staff at the Scottish Environment Protection Agency (SEPA) and particularly captain Hugh Anderson and technicians John Derrick and James Glendinning of the SEPA vessel ‘Endrick II’. We also thank BGS staff J. Ridgway, T. R. Lister and M. H. Strutt for core collection. Nigel Birch at the British Consulate-General, Guangzhou provided logistic support to C. H. Vane during two visits to Guangzhou in 2006–2007. This paper was published by permission of the Executive Director, British Geological Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher H. Vane.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vane, C.H., Ma, YJ., Chen, SJ. et al. Increasing polybrominated diphenyl ether (PBDE) contamination in sediment cores from the inner Clyde Estuary, UK. Environ Geochem Health 32, 13–21 (2010). https://doi.org/10.1007/s10653-009-9261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-009-9261-6

Keywords

  • River Clyde
  • Sediment
  • Flame retardant
  • Estuarine contamination
  • Persistent organic pollutant (POPs)