Skip to main content

Advertisement

Log in

Soils and geomedicine

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Geomedicine is the science dealing with the influence of natural factors on the geographical distribution of problems in human and veterinary medicine. Discussions on potential harmful impacts on human and animal health related to soil chemistry are frequently focused on soil pollution. However, problems related to natural excess or deficiency of chemical substances may be even more important in a global perspective. Particularly problems related to trace element deficiencies in soils have been frequently reported in agricultural crops as well as in livestock. Deficiencies in plants are often observed for boron, copper, manganese, molybdenum, and zinc. In animals deficiency problems related to cobalt, copper, iodine, manganese, and selenium are well known. Toxicity problems in animals exposed to excess intake have also been reported, e.g., for copper, fluorine, and selenium. Humans are similar to mammals in their relations to trace elements and thus likely to develop corresponding problems as observed in domestic animals if their supply of food is local and dependent on soils providing trace element imbalances in food crops. In large parts of Africa, Asia, and Latin America, people depend on locally grown food, and geomedical problems are common in these parts of the world. Well-known examples are Keshan disease in China associated with selenium deficiency, large-scale arsenic poisoning in Bangladesh and adjacent parts of India, and iodine deficiency disorders in many countries. Not all essential elements are derived only from the soil minerals. Some trace elements such as boron, iodine, and selenium are supplied in significant amounts to soils by atmospheric transport from the marine environment, and deficiency problems associated with these elements are therefore generally less common in coastal areas than farther inland. For example, iodine deficiency disorders in humans are most common in areas situated far from the ocean. There is still a great need for further research on geomedical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulla, M., Svensson, S., Nordén, A., & Öckerman, P. A. (1982). The dietary intake of trace elements in Sweden. In J. M. Gawthorne, J. M. Howell, & C. L. White (Eds.), Trace element metabolism in man and animals (pp. 14–17). Berlin: Springer.

    Google Scholar 

  • Alloway, B. J. (2005). Bioavailability of elements in soil. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology—impacts of the natural environment on public health (pp. 347–372). London: Elsevier Academic Press.

    Google Scholar 

  • Andersen, P. (2007). A review of micronutrient problems in the cultivated soil of Nepal. Mountain Research and Development, 27, 331–335.

    Article  Google Scholar 

  • Anderson, R. A. (1981). Nutritional role of chromium. Science of the Total Environment, 17, 13–29.

    Article  CAS  Google Scholar 

  • Appleton, D. J. (2005). Radon in air and water. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology—impacts of the natural environment on public health (pp. 227–262). London: Elsevier Academic Press.

    Google Scholar 

  • Bindler, R. (2003). Estimating the natural background atmospheric deposition rate of mercury using ombrotrophic bogs in Sweden. Environmental Science and Technology, 37, 40–46.

    Article  CAS  Google Scholar 

  • Bowen, H. J. M. (1979). Environmental chemistry of the elements. London: Academic Press.

    Google Scholar 

  • Cohen, B. L. (1997). Problems in the radon vs lung cancer test of the linear no-threshold theory and a procedure for resolving them. Health Physics, 72, 623–628.

    CAS  Google Scholar 

  • Cooke, T. D., & Bruland, K. W. (1987). Aquatic chemistry of selenium: Evidence of biomethylation. Environmental Science and Technology, 21, 1214–1219.

    Article  Google Scholar 

  • Cullen, T. L., & Franca, E. P. (Eds.). (1977). International symposium on areas of high natural radioactivity. Rio de Janeiro: Academia Brasileira de Ciencias.

    Google Scholar 

  • Cutter, G. A., & Bruland, K. W. (1984). The marine biogeochemistry of selenium: A re-evaluation. Limnology and Oceanography, 29, 1179–1192.

    CAS  Google Scholar 

  • Deckers, J., & Steinnes, E. (2004). State of the art on soil-related geo-medical issues in the world. In D. J. Sparks (Ed.), Advances in agronomy 84 (pp. 1–35). Doordrecht: Elsevier.

    Chapter  Google Scholar 

  • Delange, F. (1994). The disorders induced by iodine deficiency. Thyroid, 4, 107–128.

    Article  CAS  Google Scholar 

  • Dissanayake, C. B. (1991). The fluoride problem in the groundwater of Sri Lanka—environmental management and health. International Journal of Environmental Studies, 38, 137–156.

    Article  CAS  Google Scholar 

  • Dissanayake, C. (2005). Of stones and health: Medical geology in Sri Lanka. Science, 309, 883–885.

    Article  CAS  Google Scholar 

  • Dumont, C., & Kosatsky, T. (1990). Methylmercury in northern Canada. In J. Låg (Ed.), Excess and deficiency of trace elements in relation to human and animal health in arctic and subarctic regions (pp. 109–133). Oslo: The Norwegian Academy of Science and Letters.

    Google Scholar 

  • Edmunds, M., & Smedley, P. (2005). Fluoride in natural waters. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology—impacts of the natural environment on public health (pp. 301–329). London: Elsevier Academic Press.

    Google Scholar 

  • Fincham, J. E., Van Rensburg, S. J., & Marasas, W. F. O. (1981). Mseleni joint disease—a manganese deficiency? South African Medical Journal, 60, 445–447.

    CAS  Google Scholar 

  • Flaten, T. P. (1990). Geographical associations between aluminium in drinking water and death rates with dementia (including Alzheimer’s disease), Parkinson’s disease and amyotrophic lateral sclerosis in Norway. Environmental Geochemistry and Health, 12, 152–167.

    Article  CAS  Google Scholar 

  • Fordyce, F. (2005). Selenium deficiency and toxicity in the environment. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology—impacts of the natural environment on public health (pp. 373–415). London: Elsevier Academic Press.

    Google Scholar 

  • Fordyce, F. M., Johnson, C. C., Navaratne, U. R. B., Appleton, J. D., & Dissanayake, C. B. (2000). Selenium and iodine in soil, rice and drinking water in relation to endemic goiter in Sri Lanka. Science of the Total Environment, 263, 127–142.

    Article  CAS  Google Scholar 

  • Frank, A. (1998). “Mysterious” moose disease in Sweden. Similarities to copper deficiency and/or molybdenosis in cattle and sheep. Biochemical background of clinical signs and organ lesions. Science of the Total Environment, 209, 17–26.

    Article  CAS  Google Scholar 

  • Frøslie, A. (1990). Problems on deficiency and excess of minerals in animal nutrition. In J. Låg (Ed.), Geomedicine (pp. 37–60). Boca Raton: CRC Press.

    Google Scholar 

  • Fuge, R. (2005). Soils and iodine deficiency. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology—impacts of the natural environment on public health (pp. 417–433). London: Elsevier Academic Press.

    Google Scholar 

  • Goldschmidt, V. M. (1937). The principles of distributions of elements in minerals and rocks. Journal of the Chemical Society, London, 655–673.

  • Gupta, U. C., & Gupta, S. C. (2005). Future trends and requirements in micronutrient research. Communications in Soil Science and Plant Analysis, 36, 33–45.

    Article  CAS  Google Scholar 

  • Hambidge, K. M., Casey, C. E., & Krebs, N. F. (1987). Zinc. In W. Mertz (Ed.), Trace elements in human and animal nutrition (5th ed., Vol. 2, pp. 1–137). San Diego: Academic Press.

    Google Scholar 

  • Hartikainen, H. (2005). Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology, 18, 309–318.

    Article  CAS  Google Scholar 

  • Havell, R. J., Calloway, D. H., Gussow, J. D., Mertz, W., & Nesheim, M. C. (1989). Recommended dietary allowances (10th ed., p. 285). Washington, DC: National Academic Press.

    Google Scholar 

  • Jameson, S. (1982). Zinc nutrition and pregnancy in humans. In J. M. Gawthorne, J. M. Howell, & C. L. White (Eds.), Trace element metabolism in man and animals (pp. 243–248). Berlin: Springer.

    Google Scholar 

  • Karim, M. R., Ahmad, S. A., & Shahidullah, M. (2007). Nutritional status of children aged 5–14 years in selected arsenic exposed and non-exposed areas in Bangladesh. In Y. Zhu, N. Lepp, & R. Naidu (Eds.), Biogeochemistry of trace elements: Environmental protection, remediation and human health. Beijing: Tsinghua University Press.

    Google Scholar 

  • Kiekens, L. (1995). Zinc. In B. J. Alloway (Ed.), Heavy metals in soils (2nd ed., pp. 284–305). Glasgow: Blackie Academic and Professional.

    Google Scholar 

  • Kohrle, J. (1999). The trace element selenium and the thyroid gland. Biochimie, 81, 527–533.

    Article  CAS  Google Scholar 

  • Krewski, D., Yokel, R. A., Nieboer, E., Borchelt, D., Cohen, J., Harry, J., et al. (2007). Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. Journal of Toxicology and Environmental Health, Part B, 10(Suppl 1), 1–269.

    Article  CAS  Google Scholar 

  • Låg, J. (Ed.). (1990). Geomedicine. Boca Raton: CRC Press.

    Google Scholar 

  • Låg, J., & Steinnes, E. (1974). Soil selenium in relation to precipitation. Ambio, 3, 237–238.

    Google Scholar 

  • Låg, J., & Steinnes, E. (1976). Regional distribution of halogens in Norwegian forest soils. Geoderma, 16, 317–325.

    Article  Google Scholar 

  • Låg, J., & Steinnes, E. (1978). Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils. Geoderma, 20, 3–14.

    Article  Google Scholar 

  • Lewis, G., & Anderson, P. H. (1983). The nature of trace element problems: Delineating the field problem. In N. F. Suttle, R. G. Gunn, W. M. Allen, K. A. Linklater, & G. Wiener (Eds.), Trace elements in animal production and veterinary practice (Chap. 1.2). Edinburgh: British Society of Animal Production.

    Google Scholar 

  • Lubin, J. H. (1998). On the discrepancy between epidemiologic studies in individuals of lung cancer and residential radon and Cohen’s ecologic regression. Health Physics, 75(1), 4–10.

    Article  CAS  Google Scholar 

  • Ludwig, T. G., Healy, W. B., & Malthus, R. S. (1962). Dental caries prevalence in specific soil areas at Napier and Hastings. In G. J. Neale (Ed.), Transactions of the international soil conference 13–22 November 1962 (pp 895–903), New Zealand.

  • Maret, W., & Sandstead, H. H. (2008). Possible roles of zinc nutriture in the fetal origins of disease. Experimental Gerontology, 43, 378–381.

    Article  CAS  Google Scholar 

  • Marjanen, H., & Soini, S. (1972). Possible relationship between nutrient imbalances, especially manganese deficiency, and susceptibility to cancer in Finland. Annales Agricultura Fennica, 11, 391–406.

    Google Scholar 

  • Martyn, C. N., Barker, D. J., Osmond, O., Harris, E. C., Edwardson, J. A., & Lacey, R. F. (1989). Geographical relation between Alzheimer’s disease and aluminium in drinking water. Lancet, 1(8629), 59–62.

    CAS  Google Scholar 

  • Meltzer, H. M., Bibow, K., Paulsen, I. T., Mundal, H. H., Norheim, G., & Holm, H. (1993). Different bioavailability in humans of wheat and fish selenium as measured by blood-platelet response to increased dietary Se. Biological Trace Element Research, 36, 229–241.

    Article  CAS  Google Scholar 

  • Mills, C. F. (1983). The physiological and pathological basis of trace element deficiency disease. In N. F. Suttle, R. G. Gunn, W. M. Allen, K. A. Linklater, & G. Wiener (Eds.), Trace elements in animal production and veterinary practice (Chap. 1.1). Edinburgh: British Society of Animal Production.

    Google Scholar 

  • Mills, C. F., & Davis, G. K. (1987). Molybdenum. In W. Mertz (Ed.), Trace elements in human and animal nutrition (5th ed., pp. 429–463). San Diego: Academic Press.

    Google Scholar 

  • Morris, E. R. (1987). Iron. In W. Mertz (Ed.), Trace elements in human and animal nutrition (5th ed., pp. 79–142). San Diego: Academic Press.

    Google Scholar 

  • Mosher, B. W., Duce, R. A., Prospero, J. M., & Savoie, D. L. (1987). Atmospheric selenium: Geographical distribution and ocean to atmosphere flux in the Pacific. Journal of Geophysical Research, 92, 13277–13287.

    Article  CAS  Google Scholar 

  • Muth, O. H., & Allaway, W. H. (1963). The relationship of white muscle disease to the distribution of naturally occurring selenium. Journal of the American Veterinary Medicine Association, 142, 1379–1384.

    CAS  Google Scholar 

  • Nauss, K. M., & Newberne, P. M. (1982). Trace elements and immunocompetence. In J. M. Gawthorne, J. M. Howell, & C. L. White (Eds.), Trace element metabolism in man and animals (pp. 603–612). Berlin: Springer.

    Google Scholar 

  • Nielsen, F. H. (1987a). Nickel. In W. Mertz (Ed.), Trace elements in human and animal nutrition (5th ed., pp. 79–142). San Diego: Academic Press.

    Google Scholar 

  • Nielsen, F. H. (1987b). Vanadium. In W. Mertz (Ed.), Trace elements in human and animal nutrition (5th ed., pp. 275–300). San Diego: Academic Press.

    Google Scholar 

  • Oliver, M. A. (1997). Soil and human health: A review. European Journal of Soil Science, 48, 573–592.

    Article  CAS  Google Scholar 

  • Oliver, M. A. (2004). Soil and human health: Geomedical aspects in relation to agriculture. In E. Steinnes (Ed.), Geomedical aspects of organic farming (pp. 16–32). Oslo: The Norwegian Academy of Science and Letters.

    Google Scholar 

  • Painter, S., Cameron, E. M., Allan, R., & Rouse, J. (1994). Reconnaissance geochemistry and its environmental relevance. Journal of Geochemical Exploration, 51, 213–246.

    Article  CAS  Google Scholar 

  • Patterson, C. C. (1965). Contaminated and natural environments of man. Archives of Environmental Health, 11, 344–360.

    CAS  Google Scholar 

  • Prohaska, J. R. (1982). Changes in brain enzymes accompanying deficiencies of the trace elements, copper, selenium, or zinc. In J. M. Gawthorne, J. M. Howell, & C. L. White (Eds.), Trace element metabolism in man and animals (pp. 275–282). Berlin: Springer.

    Google Scholar 

  • Reinhold, J. G., Lahimgarzadeh, A., Nasr, K., & Hedayati, H. (1973). Effects of purified phytate-rich bread upon metabolism of zinc, calcium, phosphorus, and nitrogen in man. Lancet, 1(7798), 283–288.

    Article  CAS  Google Scholar 

  • Roels, H., Lauwerys, R., Buchet, J. P., & Bernard, A. (1981). Environmental exposure to cadmium and renal function of aged women in three areas of Belgium. Environmental Research, 24, 117–130.

    Article  CAS  Google Scholar 

  • Selinus, O., Alloway, B., Centeno, J. A., Finkelman, R. B., Fuge, R., Lindh, U., et al. (Eds.). (2005). Essentials of medical geology—impacts of the natural environment on public health. London: Elsevier Academic Press.

    Google Scholar 

  • Seto, F. Y. B., & Duce, R. A. (1972). A laboratory study of iodine enrichment on atmospheric sea-salt particles produced by bubbles. Journal of Geophysical Research, 77, 5339–5349.

    Article  CAS  Google Scholar 

  • Singh, M. V. (2001). Evaluation of current micronutrient stocks in different agro-ecological zones of India for sustainable crop production. Fertilizer News (Delhi), 46(2), 25–42.

    CAS  Google Scholar 

  • Smedley, P. M., & Kinniburgh, D. G. (2002). A review of the sources, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smedley, P. M., & Kinniburgh, D. G. (2005). Arsenic in groundwater and the environment. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology—impacts of the natural environment on public health (pp. 263–269). London: Elsevier Academic Press.

    Google Scholar 

  • Smith, R. M. (1987). Cobalt. In W. Mertz (Ed.), Trace elements in human and animal nutrition (5th ed., pp. 79–142). San Diego: Academic Press.

    Google Scholar 

  • Smith, B. J., Field, R. W., & Lynch, C. F. (1998). Residential Rn-222 exposure and lung cancer: Testing the linear no-threshold theory with ecologic data. Health Physics, 75(1), 11–14.

    Article  CAS  Google Scholar 

  • Steinnes, E. (1990). Effects of natural ionizing radiation. In J. Låg (Ed.), Geomedicine (pp. 163–169). Boca Raton: CRC Press.

    Google Scholar 

  • Steinnes, E. (Ed.). (2004). Geomedical aspects of organic farming. Oslo: The Norwegian Academy of Science and Letters.

    Google Scholar 

  • Steinnes, E., & Njåstad, O. (1995). Enrichment of metals in the organic surface layer of natural soils: Identification of contributions from different sources. The Analyst, 120, 1479–1483.

    Article  CAS  Google Scholar 

  • Tan, J., & Hou, S. (1989). Environmental selenium and health problems in China. In J. Tan, et al. (Eds.), Environmental selenium and health (pp. 219–234). Beijing: People Health Press.

    Google Scholar 

  • Underwood, E. J., & Filmer, J. F. (1935). The determination of the biologically potent element cobalt in Limonite. Australian Veterinary Journal, 11, 84–92.

    Article  CAS  Google Scholar 

  • UNSCEAR. (1982). Ionizing radiation: sources and biological effects. United Nations Scientific Committee on the Effects of Atomic Radiation, 1982 Report to the General Assembly. New York: United Nations.

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232.

    Article  CAS  Google Scholar 

  • WHO. (1996). Trace Elements in Human Nutrition and Health. Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2004). Guidelines for drinking-water quality (3rd ed.). Geneva: World Health Organization.

    Google Scholar 

  • Yoshida, S., & Muramatsu, Y. (1995). Determination of organic, inorganic, and particulate iodine in the coastal atmosphere of Japan. Journal of Radioanalytical and Nuclear Chemistry—Articles, 196, 295–302.

    Article  CAS  Google Scholar 

  • Zhu, Y., Lepp, N., & Naidu, R. (Eds.). (2007). Biogeochemistry of trace elements: Environmental protection, remediation and human health. Beijing: Tsinghua University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiliv Steinnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinnes, E. Soils and geomedicine. Environ Geochem Health 31, 523–535 (2009). https://doi.org/10.1007/s10653-009-9257-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-009-9257-2

Keywords

Navigation