Skip to main content

Sediment geochemistry and arsenic mobilization in shallow aquifers of the Datong basin, northern China

Abstract

Understanding the mechanism of arsenic (As) mobilization from sediments to groundwater is important for water quality management in areas of endemic arsenic poisoning, such as the Datong basin in northern China. The bulk geochemistry analysis of sediment samples from three 50-m boreholes drilled specifically for this study at As-contaminated aquifers, the groundwaters of which have an As concentration up to 1060 μg/l, revealed that the average bulk concentrations of major and trace elements of the samples are similar to those of the average upper continental crust. The average As content of the sediment samples (18.7 mg/kg) is higher than that of modern unconsolidated sediments (5–10 mg/kg). Moreover, the abundance of elements varied with grain size, with higher concentrations in finer fractions of the sediments, such as silt and clay. The concentration of NH2OH–HCl-extracted iron (Fe) strongly correlated with that of extracted As, suggesting that Fe oxyhydroxides may be the major sink of As in the aquifer. The results of microcosm experiments showed that As mobilization from sediments to groundwater is probably mainly related to changes in the redox conditions, with moderately reducing conditions being favorable for As release from sediments into groundwater.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenlrib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat. Environmental Science and Technology, 35, 2621–2626. doi:10.1021/es010027y.

    Article  CAS  Google Scholar 

  2. Bottomley, D. J. (1984). Origins of some arseniferous groundwaters in Nova Scotia and New Brunswich, Canada. Journal of Hydrology (Amsterdam), 69, 223–257. doi:10.1016/0022-1694(84)90165-3.

    Article  CAS  Google Scholar 

  3. Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science and Technology, 37, 4182–4189. doi:10.1021/es030309t.

    Article  CAS  Google Scholar 

  4. Guo, H. M., & Wang, Y. X. (2005). Geochemical characteristics of shallow groundwater in Datong basin, northwestern China. Journal of Geochemical Exploration, 87, 109–120. doi:10.1016/j.gexplo.2005.08.002.

    Article  CAS  Google Scholar 

  5. Guo, H. M., Wang, Y. X., Shpeizer, G. M., & Yan, S. L. (2003). Natural occurrence of arsenic in shallow groundwater, Shanyin, Datong basin, China. Journal of Environmental Science and Health. Part A Environmental Science and Engineering & Toxic and Hazardous Substance Control, 38, 2565–2580.

    Google Scholar 

  6. Höhn, R., Schröter, M., Kent, D. B., Davis, J. A., Jakobsen, R., Jann, S., et al. (2006). Tracer test with As(V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentrations. Journal of Contaminant Hydrology, 88, 36–54. doi:10.1016/j.jconhyd.2006.06.001.

    Article  Google Scholar 

  7. Jain, C. K., & Ali, I. (2000). Arsenic: Occurrence, toxicity and speciation. Water Research, 34, 4304–4312. doi:10.1016/S0043-1354(00)00182-2.

    Article  CAS  Google Scholar 

  8. Li, J., Wang, Z., Cheng, X., Wang, S., Jia, Q., Han, L., et al. (2005). Investigation of the epidemiology of endemic arsenism in Ying County of Shanxi Province and the content relationship between water fluoride and water arsenic in aquatic environment (in Chinese with English abstract). Chinese Journal of Endemiology, 24, 183–185.

    CAS  Google Scholar 

  9. Lowers, H. A., Breit, G. N., Foster, A. L., Whitney, J., Yount, J., Uddin, M. N., et al. (2007). Arsenic incorporation into authigenic pyrite, Bengal basin sediment, Bangladesh. Geochimica et Cosmochimica Acta, 71, 2699–2717. doi:10.1016/j.gca.2007.03.022.

    Article  CAS  Google Scholar 

  10. Manning, B. A., Fendorf, S. E., & Goldberg, S. (1998). Surface structures and stability of arsenic(III) on goethite: Spectroscopic evidence for innersphere complexes. Environmental Science and Technology, 32, 2383–2388. doi:10.1021/es9802201.

    Article  CAS  Google Scholar 

  11. Masscheleyn, P. H., DeLaune, R. D., & Patrick, W. H., Jr. (1990). Transformations of selenium as affected by sediment oxidation–reduction potential and pH. Environmental Science and Technology, 24, 91–96. doi:10.1021/es00071a010.

    Article  CAS  Google Scholar 

  12. McArthur, J. M., Ravenscroft, P., Safiulla, S., & Thirlwall, M. F. (2001). Arsenic in groundwater testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research, 37, 109–117. doi:10.1029/2000WR900270.

    Article  CAS  Google Scholar 

  13. Nickson, R., McArthur, J., Burgess, W. G., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395, 338. doi:10.1038/26387.

    Article  CAS  Google Scholar 

  14. Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413. doi:10.1016/S0883-2927(99)00086-4.

    Article  CAS  Google Scholar 

  15. Polya, D. A., Gault, A. G., Diebe, N., Feldman, P., Rosenboom, J. W., Gilligan, E., et al. (2005). Arsenic hazard in shallow Cambodian groundwaters. Mineralogical Magazine, 69, 807–823. doi:10.1180/0026461056950290.

    Article  CAS  Google Scholar 

  16. Raven, K. P., Jain, A., & Loeppert, R. H. (1998). Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environmental Science and Technology, 32, 344–349. doi:10.1021/es970421p.

    Article  CAS  Google Scholar 

  17. Root, R. A., Dixit, S., Campbell, K. M., Jew, A. D., Hering, G. J., & O’Day, P. A. (2007). Arsenic sequestration by sorption processes in high-iron sediments. Geochimica et Cosmochimica Acta, 71, 5872–5803. doi:10.1016/j.gca.2007.04.038.

    Article  Google Scholar 

  18. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. doi:10.1016/S0883-2927(02)00018-5.

    Article  CAS  Google Scholar 

  19. Smedley, P. L., Zhang, M., Zhang, G., & Luo, Z. (2003). Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot basin, Inner Mongolia. Applied Geochemistry, 18, 1453–1477. doi:10.1016/S0883-2927(03)00062-3.

    Article  CAS  Google Scholar 

  20. Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bulletin of the World Health Organization, 78, 1093–1103.

    CAS  Google Scholar 

  21. Su, C. L. (2006). Regional hydrogeochemistry and genesis of high arsenic groundwater at Datong basin, Shanxi Province. PhD thesis (in Chinese with English abstract), China University of Geosciences, Wuhan.

  22. Swartz, C. H., Blute, N. K., Badruzzman, B., Ali, A., Brabander, D., Jay, J., et al. (2004). Mobility of arsenic I a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization. Geochimica et Cosmochimica Acta, 68, 4539–4557. doi:10.1016/j.gca.2004.04.020.

    Article  CAS  Google Scholar 

  23. Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265. doi:10.1029/95RG00262.

    Article  Google Scholar 

  24. Varsányi, I., & Kovács, L. (2006). Arsenic, iron and organic matter in sediments and groundwater in the Pannonian basin, Hungary. Applied Geochemistry, 21, 949–963. doi:10.1016/j.apgeochem.2006.03.006.

    Article  Google Scholar 

  25. World Health Organization (2004). Guidelines for drinking-water quality recommendations (Vol. 1, pp. 515). Geneva: World Health Organization.

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their great help in improving the quality of the manuscript. This research was financially supported by National Natural Science Foundation of China (Grant for Outstanding Youth No. 40425001) and the 111 project of Ministry of Education of PR China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanxin Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xie, X., Wang, Y., Duan, M. et al. Sediment geochemistry and arsenic mobilization in shallow aquifers of the Datong basin, northern China. Environ Geochem Health 31, 493–502 (2009). https://doi.org/10.1007/s10653-008-9204-7

Download citation

Keywords

  • Aquifer sediments
  • Arsenic
  • Datong basin
  • Geochemistry
  • Mobilization
  • Redox condition