Skip to main content

Particle size distribution and pollutants in road-deposited sediments in different areas of Zhenjiang, China

Abstract

An understanding of road-deposited sediment (RDS) characteristics on an impervious surface is essential to estimate pollutant washoff characteristics and to minimise the impacts of pollutants on the water environment. A total of 62 RDS samples were collected from four different land-use types (commercial, residential, intense traffic and riverside park) in Zhenjiang City, China. The samples were fractionated into seven grain-size classes and analysed for particle size distribution and concentrations of pollutants. The samples are found to consist predominantly of fine particles (60–80%, <250 μm). The maximum mean concentrations of zinc, lead and copper were 686.93, 589.19 and 158.16 mg/kg, respectively, with the highest metal concentrations found in samples from the intense traffic area. The maximum mean contents of organic matter (12.55%), nitrogen (6.31 mg/g) and phosphorus (5.15 mg/g) were found in samples from the commercial area. The concentrations of heavy metals were highest in the smallest particle size fraction analysed (63 μm). The organic matter and nitrogen content generally increased with decreasing particle sizes in the <500-μm particle size range. The results also revealed that most of the total nitrogen (TN) is attached to the finer sediments and that to effectively reduce TN loads in particulates, treatment facilities must be able to remove the finer particles (down to 125 μm for TN).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adachi, K., & Tainosho, Y. (2005). Single particle characterization of size-fractionated road sediments. Applied Geochemistry, 20, 849–859.

    Article  CAS  Google Scholar 

  2. AI-Rajhi, M. A., Seaward, M. R. D., & AI-Aamer, A. S. (1996). Metal levels in indoor and outdoor dust in Riyadh, Saudi Arabia. Environment International, 3, 315–324.

    Article  Google Scholar 

  3. Andral, M. C., Roger, S., Montrejaud-Vignoles, M., et al. (1999). Particles size distribution and hydrodynamic characteristics of solid matter carried by runoff from motorways. Water Environment Research, 71(4), 398–407.

    Article  CAS  Google Scholar 

  4. Ball, J. E., Jenks, R., & Aubourg, D. (1998). An assessment of the availability of pollutant constituents on road surfaces. Science of the Total Environment, 209, 243–254.

    Article  CAS  Google Scholar 

  5. Buffleben, M. S., Zayeed, K., Kimbrough, D., Stenstrom, M. K., & Suffet, I. H. (2002). Evaluation of urban non-point source runoff of hazardous metals entering Santa Monica Bay, California. Water Science Technology, 45, 263–268.

    CAS  Google Scholar 

  6. CGL, China Geological Laboratory. (1987). Analytical method and quality management for samples of 1:200 000 geochemical exploration (pp. 50–61). Beijing, China: China Geology Press.

    Google Scholar 

  7. Chon, H. T., Kim, K. W., & Kim, J. Y. (1995). Metal contamination of soils and dusts in Seoul metropolitan city, Korea. Environmental Geochemistry & Health, 17, 139–146.

    Article  CAS  Google Scholar 

  8. De Miguel, E., Llamas, J. F., Chacon, E., Berg, T., Larssen, S., Rgyset, O., et al. (1997). Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmospheric Environment, 31, 2733–2740.

    Article  Google Scholar 

  9. Dong, A., Chesters, G., & Simsiman, G. V. (1984). Metal composition of soil, sediments, and urban dust and dirt samples from the Menominee River Watershed, Wisconsin, U.S.A. Water, Air and Soil Pollution, 22, 257–275.

    Article  CAS  Google Scholar 

  10. Droppo, L. G., Irvine, K. N., Murphy, T. P., & Jaskot, C. (1998). Fractional metals in street dust of a mixed land use sewershed, Hamilton, Ontario. Hydrology in a changing environment III (pp. 384–394). British Hydrological Society.

  11. Ellis, J. B., & Revitt, D. M. (1982). Incidence of heavy metals in street surface sediments: Solubility and grain size studies. Water Air Soil Pollution, 17, 87–100.

    CAS  Google Scholar 

  12. Fergusson, J. E., & Ryan, D. E. (1984). The elemental composition of street dust from large and small urban areas related to city type, source and particle size. The Science of the Total Environment, 34, 101–116.

    Article  CAS  Google Scholar 

  13. Folk, R. L. (1974). Petrology of sedimentary rocks. Austin, TX: Hemphill.

    Google Scholar 

  14. Harrison, R. M., Laxen, D. P. H., & Wilson, S. J. (1981). Chemical associations of lead, cadmium, copper, and zinc in street dusts and roadside soils. Environmental Science Technology, 11, 1378–1383.

    Article  Google Scholar 

  15. Hewitt, C. N., & Rashed, M. B. (1992). Removal rates of selected pollutants in the runoff waters from a major rural highway. Water Resource, 26(3), 311–319.

    CAS  Google Scholar 

  16. Horowitz, A. J. (1991). A primer on sediment-trace element chemistry. Chelsea, MI: Lewis.

    Google Scholar 

  17. Jiries, A. G., Hussein, H. H., & Halash, Z. (2001). The quality of water and sediments of street runoff in Amman, Jordan. Hydrological Processes, 15, 815–824.

    Article  Google Scholar 

  18. Kidwell-Ross, R. (Ed.). (2003). An overview of sweeping equipment technology. Available at: http://www.americansweeper.com/topics/overviewofsweepers.html. Accessed 2 September 2004.

  19. Kim, J. Y., Myung, J. H., Ahn, J. S., & Chon, H. T. (1998). Heavy metal speciation in dusts and stream sediments in the Taejon area, Korea. Journal of Geochemical Exploration, 64, 409–419.

    Article  CAS  Google Scholar 

  20. Legret, M., & Pagotto, C. (1999). Evaluation of pollutant Loadings in the runoff waters from a major rural highways. Science of the Total Environment, 235, 143–150.

    Article  CAS  Google Scholar 

  21. Li, X., Poon, C., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 79–90.

    Google Scholar 

  22. Liebens, J. (2001). Heavy metal contamination of sediments in stormwater management. Environmental Geology, 41, 341–351.

    Article  CAS  Google Scholar 

  23. Lisiewicz, M., Heimburger, R., & Golimowski, J. (2000). Granulometry and the content of toxic and potentially toxic elements in vacuum-cleaner collected, indoor dusts of city of Warsaw. Science of the Total Environment, 263, 69–78.

    Article  CAS  Google Scholar 

  24. Lu R. K. (1999) Analysis Methods of Soil Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press, 228–233.

  25. Masters, R. D. (1998). Environmental pollution, neurotoxicity and criminal violence. In J. Rose (Ed.), Environmental toxicology. London: Gordon and Breach.

    Google Scholar 

  26. Momani, K., Jradat, Q., Omari, A., Abdel-Azziz, J., & Al-Momani, I. (2002). Water soluble species and heavy contamination of the petroleum refinery area, Jordan. Journal of Environmental Monitoring, 4, 1–8.

    Article  Google Scholar 

  27. Novotny, V., & Chesters, G. (1981). Handbook of nonpoint pollution sources and management (pp. 441–445). Van Nostrand Reinhold: New York.

    Google Scholar 

  28. Pagotto, C., Remy, N., Legret, M., & Le Cloirec, P. (2001). Heavy metal pollution of road dust and roadside soil near a major rural highway. Environmental Technology, 22, 307–319.

    Article  CAS  Google Scholar 

  29. Rogge, W. F., Hildemann, L. M., Mazurek, M. A., et al. (1993). Sources of fine organic aerosol: 3. Road dust, tire debris and organometallic brake lining dust: roads as sources and sinks. Environmental Science and Technology, 27(9), 1892–1904.

    Article  CAS  Google Scholar 

  30. Sansalone, J. J., & Buchberger, S. G. (1997). Characterization of solid and metal element distributions in urban highway stormwater. Water Science and Technology, 36(8), 155–160.

    Article  CAS  Google Scholar 

  31. Sartor, J. D. & Boyd, G. B. (1972). Water pollution aspects of street surface contaminants. U.S. Environmental Protection Agency. EPA-R2-72-081.

  32. Shi, W. G. (1990). Street surface sediment accumulation and pollution characteristics-for example in Chengdu. Environmental Science, 3, 18–23.

    Google Scholar 

  33. Soranno, P. A., Hubler, S. L., & Carpenter, S. R. (1996). Phosphorus loads to surface waters: A simple model to account for spatial pattern of land use. Ecological Applications, 6(3), 865–878.

    Article  Google Scholar 

  34. Sorme, L., & Lagerkvist, R. (2002). Source of heavy metals in urban wastewater in Stockholm. Science of the Total Environment, 298, 131–145.

    Article  CAS  Google Scholar 

  35. Stone, M., & Marsalek, J. (1996). Trace metal composition and speciation in street sediments. Water Air Soil Pollution, 87, 149–169.

    Article  CAS  Google Scholar 

  36. Sutherland, R. A. (2003). Lead in grain size fractions of road-deposited sediment. Environmental Pollution, 21, 229–237.

    Article  Google Scholar 

  37. Sutherland, R. A., & Tolosa, C. A. (2000). Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environmental pollution, 110, 483–495.

    Article  CAS  Google Scholar 

  38. Sutherland, R. A., Jelen, S. L., & Minton, G. (1998) High efficiency sweeping as an alternative to the use of wet vaults for stormwater treatment. In: W. James (Ed.), Advances in modelling the management of stormwater impacts computational hydraulics international. Guelph, Canada, 5,179–190.

  39. Tai, Y. L. (1991). Physical and chemical characterisation of street dust and dirt from urban area (Vol. 93). Department of Civil Engineering, Pennsylvania State University.

  40. Tuner, D., Maynard, J., & Sansalone, I. (2001). Heavy metal contamination in soils of urban highway: Comparison between runoff and soil concentrations at Cincinnati, Ohio. Water Air Soil Pollution, 132, 293–314.

    Article  Google Scholar 

  41. Viklander, M. (1998). Particle size distribution and metal content in street sediments. Journal of Environmental Engineering, 124(8), 761–766.

    Article  CAS  Google Scholar 

  42. Wang, W. H., Wong, M. H., Leharne, S., & Fisher, B. (1998). Fractionation and biotoxicity of heavy metals in urban dusts collected from Hong Kong and London. Environmental Geochemistry and Health, 20, 185–198.

    Article  CAS  Google Scholar 

  43. Xie, S. J., Dearing, J. A., & Bloemendal, J. (2000). The organic matter content of street dust in Liverpool, UK, and its association with dust magnetic properties. Atmospheric Environment, 34(2), 269–275.

    Article  CAS  Google Scholar 

  44. Yeung, Z. L. L., Kwok, R. C. W., & Yu, K. N. (2003). Determination of mufti-element profiles of street dust using energy dispersive X-ray fluorescence (EDXRF). Applied radiation isotopes, 58, 339–346.

    Article  CAS  Google Scholar 

  45. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

  46. Zanders, J. M. (2005). Road sediment: Characterization and implications for the performance of vegetated strips for treating road run-off. Science of the Total Environment, 339, 41–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the National Natural Science Foundation of China (No. 30570053) and 863 (High-tech) program (No. 2003AA601100).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bo Bian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bian, B., Zhu, W. Particle size distribution and pollutants in road-deposited sediments in different areas of Zhenjiang, China. Environ Geochem Health 31, 511–520 (2009). https://doi.org/10.1007/s10653-008-9203-8

Download citation

Keywords

  • Heavy metals
  • Land use type
  • Nitrogen
  • Particle size distribution
  • Phosphorus
  • Road-deposited sediment