Skip to main content

Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns


The current paper presents the concentration, distribution, and modes of occurrence of trace elements of 13 coals from south Brazil. The samples were collected in the state of Santa Catarina. Chemical analyses and the high ash yields indicate that all studied coals are rich in mineral matter, with SiO2 and Al2O3 dominating as determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Quartz is the main mineral species and is associated with minor levels of feldspars, kaolinite, hematite, and iron-rich carbonates. The contents of trace elements, including As, Pb, Cd, Ni, Cr, Mn, Be, V, U, Zn, Li, Cu, Tl, and Ni, in coals were determined. A comparison of ranges and means of elemental concentrations in Santa Catarina, Brazil, and world coals shows that the ranges of most elements in Santa Catarina coal are very close to the usual worldwide concentration ranges in coal.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. ABNT (Associação Brasileira de Normas Técnicas). (1983). Amostragem de carvão bruto e ou beneficiado. NBR 8291, Associação Brasileira de Normas Técnicas, Rio de Janeiro.

  2. American Society for Testing and Materials (ASTM). (1991). Annual book of ASTM standards, section 5, petroleum products, lubricants and fossil fuels, volume 05.05 gaseous fuels, coal and coke, D 2797: Standard practice for preparing coal samples for microscopical analysis by reflected light (pp. 308–310). American Society for Testing and Materials.

  3. American Society for Testing and Materials (ASTM). (1996). Standard test methods for collection of a gross sample of coal (D2234-89). In Annual book of ASTM standards: Gaseous fuels; coal and coke, v 5.05 (pp. 236–247). West Conshohocken, PA: American Society for Testing and Materials.

  4. Belolli, M. (2002). A história do carvão de Santa Catarina. Florianópolis, Brazil: Imprensa Oficial do Estado de Santa Catarina.

    Google Scholar 

  5. Borda, M., Elsetinow, A., Schoonen, M., & Strongin, D. (2001). Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early Earth. Astrobiology, 1(3), 283–288. doi:10.1089/15311070152757474.

    Article  CAS  Google Scholar 

  6. BRAZIL. (1987). Perfil Analítico do Carvão. Porto Alegre. Boletim (Vol. 6). Porto Alegre, Brazil: Departamento Nacional de Produção Mineral.

    Google Scholar 

  7. Briggs, P. H. (1997). Determination of 25 elements in coal ash from 8 argonne premium coal samples by inductively coupled argon plasma-mass spectrometry. In C. A. Palmer (Ed.), The chemical analysis of argonne premium coal samples (Vol. 2144, pp. 39–43). U.S. Geological Survey Bulletin.

  8. Cohn, C. A., Borda, M. J., & Schoonen, M. A. (2004). RNA decomposition by pyrite-induced radicals and possible role of lipids during the emergence of life. Earth and Planetary Science Letters, 225(3–4), 271–278. doi:10.1016/j.epsl.2004.07.007.

    Article  CAS  Google Scholar 

  9. Cohn, C., Mueller, S., Wimmer, E., Leifer, N., Greenbaum, S., Strongin, D. R., et al. (2006). Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochemical Transactions, 7, 3. doi:10.1186/1467-4866-7-3.

    Article  Google Scholar 

  10. Cohn, C. A., Pak, A., Schoonen, M. A. A., & Strongin, D. R. (2005). Quantifying hydrogen peroxide in iron-containing solutions using leuco crystal violet. Geochemical Transactions, 6(3), 47–52. doi:10.1186/1467-4866-6-47.

    Article  CAS  Google Scholar 

  11. CPRM. Accessed 20 July 2006.

  12. DNPM. (1996). Informativo anual da Indústria carbonífera, 89 pp.

  13. Fiedler, H. D. (1987). Caracterização do carvão de Candiota e implicações ambientais do seu processamento. Master’s thesis, Federal University of Rio Grande do Sul, Brazil.

  14. Finkelman, R. B. (1993). Trace and minor elements in coal. In M. H. Engel & S. A. Macko (Eds.), Organic geochemistry (pp. 593–607). New York: Plenum.

    Google Scholar 

  15. Finkelman, R. B. (1994). Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Processing Technology, 39, 21. doi:10.1016/0378-3820(94)90169-4.

    Article  CAS  Google Scholar 

  16. Finkelman, R. B. (1995). Modes of occurrence of environmentally sensitive trace elements in coal. In D. J. Swaine & F. Goodarzi (Eds.), Environmental aspects of trace elements in coal (Chap. 3, pp. 24–50). Dordrecht: Kluwer.

  17. Finkelman, R. B. (2000). The world coal quality inventory, U.S. Geological Survey fact sheet 155-00.

  18. Finkelman, R. B., Belkin, H. E., & Centeno, J. A. (2006). Health impacts of coal: Should we be concerned? Geotimes, 51, 24–28.

    Google Scholar 

  19. Hu, J. B. B., Zheng, B., Finkelman, R. B., Wang, B., Wang, M., Li, S., et al. (2006). Concentration and distribution of sixty-one elements in coals from DPR Korea. Fuel, 85(5–6), 679–688. doi:10.1016/j.fuel.2005.08.037.

    Article  CAS  Google Scholar 

  20. Kagey, B. T., & Wixson, B. G. (1983). Health implications of coal development. In I. Thornton (Ed.), Applied environmental geochemistry (pp. 463–480). New York: Academic.

    Google Scholar 

  21. Kalkreuth, W., Holz, M., Kern, M., Machado, G., Mexias, A., Silva, M. B., et al. (2006). Petrology and chemistry of Permian coals from the Paraná Basin: 1. Santa Terezinha, Leão-Butiá and Candiota Coalfields, Rio Grande do Sul, Brazil. International Journal of Coal Geology, 68(1), 79–116. doi:10.1016/j.coal.2005.10.006.

    Article  CAS  Google Scholar 

  22. Kalkreuth, W. B. B., Sherwood, N., Cioccari, G., Corrêa, Z., Silva, M., Zhong, N., et al. (2004). The application of FAMM (fluorescence alteration of multiple macerals) analyses for evaluating rank of Paraná Basin coals, Brazil. International Journal of Coal Geology, 57, 167–185. doi:10.1016/j.coal.2003.12.001.

    Article  CAS  Google Scholar 

  23. Liu, G. J., Vassilev, S. V., Gao, L. F., Zheng, L. G., & Peng, Z. C. (2005). Energy conversion and management, 46, 2001. doi:10.1016/j.enconman.2004.11.002

  24. Meier, A. L. (1997). Determination of 33 elements in coal ash from 8 argonne premium coal samples by inductively coupled argon plasma-mass spectrometry. In C. A. Palmer (Ed.), The chemical analysis of argonne premium coal samples (Vol. 2144, pp. 45–50). U.S. Geological Survey Bulletin.

  25. Nunes, A. V., Muller, E., & Santos, M. A. M. (1990). Diagnóstico do carvão mineral catarinense. Florianópolis: Imprensa Oficial do Estado de Santa Catarina. Secretaria do Estado da Ciência e Tecnologia, das Minas e Energia, 77 pp.

  26. O’Leary, R. M. (1997). Determination of mercury and selenium in eight argonne premium coal samples by cold-vapor and hydride-generation atomic absorption spectrometry. In C. A. Palmer (Ed.), The chemical analysis of argonne premium coal samples (Vol. 2144, pp. 51–55). U.S. Geological Survey Bulletin.

  27. Pike, S., Dewison, M. G., & Spears, D. A. (1989). Sources of error in low temperature plasma ashing processes for quantitative mineral analysis of coal ash. Journal of the Institute of Fuel, 68, 664–669. doi:10.1016/0016-2361(89)90170-1.

    Article  CAS  Google Scholar 

  28. Pires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60, 57–72. doi:10.1016/j.coal.2004.04.003.

    Article  CAS  Google Scholar 

  29. Putzer, H. (1952). Boletim Técnico da Divisão de Fomento da Produção Mineral do DNPM. Camadas de Carvão Mineral e seu Comportamento no Sul de Santa Catarina. Ro de Janeiro, boletim no 91, pp. 1–182.

  30. Querol, X., Cabrera, L., Pickel, W., López-Soler, A., Hagemann, H. W., & Fernández-Turiel, J. L. (1996). Geological controls on the quality of the Mequinenza subbituminous coal deposit, northeast Spain. International Journal of Coal Geology, 29, 67–91. doi:10.1016/0166-5162(95)00009-7.

    Article  CAS  Google Scholar 

  31. Querol, X., Whateley, M. K. G., Fernandez-Turiel, J. L., & Tuncali, E. (1997). Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. International Journal of Coal Geology, 33, 255–271. doi:10.1016/S0166-5162(96)00044-4.

    Article  CAS  Google Scholar 

  32. Ren, D. Y., Zhao, F. H., Wang, Y. Q., et al. (1999). Distributions of minor and trace element elements in Chinese coals. International Journal of Coal Geology, 40, 109–118. doi:10.1016/S0166-5162(98)00063-9.

    Article  CAS  Google Scholar 

  33. Scheibe, L. F. (2002). O carvão em Santa Catarina: Mineração e conseqüências ambientais. In E. C. Teixeira & M. J. R. Pires (Coord), Meio ambiente e carvão – impactos da exploração e utilização (pp. 45–68). Porto Alegre: Cadernos de Planejamento e Gestão Ambiental.

  34. Sekine, Y., Sakajiri, K., Kikuchi, E., & Matsukata, M. (2008). Release behavior of trace elements from coal during high-temperature processing. Powder Technology, 180(2), 210–215. doi:10.1016/j.powtec.2007.03.012.

    Article  CAS  Google Scholar 

  35. SIECESC. (2008). Accessed 18 June 2008.

  36. Silva, L. F. O. (2005). Chromium species in coal water and impacts for health human. In Proceedings of the International Workshop Medical Geology Metals, Health and the Environment, Rio de Janeiro, Brasil.

  37. Silva, L. F. O. (2006). Geochemical and variability of acid mine drainage (AMD) compositions. In Proceedings of the International Congress of Environment and Human Development: Biodiversity, Water Resources and Social Responsibility—Madehuman I, Salvador, Brazil.

  38. Silva, L. F. O., da Boit, K. M., & Oliveira, M. L. S. (2007). Prediction of induced health and environmental problems linking coal mining in Santa Catarina (Brazil). In Proceedings of the II International Congress of Environment and Human Development: Biodiversity, Water Resources and Social Responsibility, Foz do Iguaçu, Brazil.

  39. Silva, M. B., & Kalkreuth, W. (2005). Petrological and geochemical characterization of Candiota coal seams, Brazil—implication for coal facies interpretations and coal rank. International Journal of Coal Geology, 64, 217–238. doi:10.1016/j.coal.2005.04.003.

    Article  CAS  Google Scholar 

  40. Swaine, D. J. (1990). Trace elements in coal. London: Butterworths.

    Google Scholar 

  41. Vassilev, S. V., & Tascon, J. M. D. (2003). Methods for characterization of inorganic and mineral matter in coal: A critical overview. Energy & Fuels, 17(2), 271–281. doi:10.1021/ef020113z.

    Article  CAS  Google Scholar 

  42. Ward, C. R. (2002). Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology, 50(1–4), 135–168. doi:10.1016/S0166-5162(02)00117-9.

    Article  CAS  Google Scholar 

  43. White, I. C. (1988). Relatório Final da Comissão de Estudos das Minas de Carvão de Pedra do Brazil, 1 de julho de 1904 a 31 de maio de 1906. Edição Fac-Similar. Seventh Gondwana Symposium, São Paulo, DNPM.

  44. Zhang, Y., Liu, G., Zheng, L., Chou, C., & Qi, C. (2007). Environmental geochemistry of selenium in Chinese coal. Kuangwu Yanshi Diqiu Huaue Tongbao, 26(4), 389–398.

    CAS  Google Scholar 

  45. Zhao, A., Zhao, J., Tang, X. Y., & Huang, W. H. (2002). Abundance of trace elements in coal of China. Coal Geology of China, 14(Suppl.), 5–13 (in Chinese with English abstract).

    Google Scholar 

  46. Zheng, G., Kuno, A., Mahdi, T. A., Evans, D. J., Miyahara, M., Takahashi, Y., et al. (2007). Iron speciation and mineral characterization of contaminated sediments by coal mining drainage in Neath Canal, South Wales, United Kingdom. Geochemical Journal, 41(6), 463–474.

    CAS  Google Scholar 

Download references


The US Geological Survey conducted most of the chemical analyses as part their World Coal Quality Inventory project (WoCQI: Finkelman 2000). We thank Susan Tewalt of the USGS for her cooperation and we are grateful to Mr. Marcio Pink for invaluable collaboration in the structural work.

Author information



Corresponding author

Correspondence to L. F. O. Silva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silva, L.F.O., Oliveira, M.L.S., da Boit, K.M. et al. Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns. Environ Geochem Health 31, 475–485 (2009).

Download citation


  • Brazil coal mining
  • Health
  • Trace elements
  • The environment