Advertisement

Environmental Geochemistry and Health

, Volume 31, Issue 4, pp 475–485 | Cite as

Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns

  • L. F. O. SilvaEmail author
  • M. L. S. Oliveira
  • K. M. da Boit
  • R. B. Finkelman
Original Paper

Abstract

The current paper presents the concentration, distribution, and modes of occurrence of trace elements of 13 coals from south Brazil. The samples were collected in the state of Santa Catarina. Chemical analyses and the high ash yields indicate that all studied coals are rich in mineral matter, with SiO2 and Al2O3 dominating as determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Quartz is the main mineral species and is associated with minor levels of feldspars, kaolinite, hematite, and iron-rich carbonates. The contents of trace elements, including As, Pb, Cd, Ni, Cr, Mn, Be, V, U, Zn, Li, Cu, Tl, and Ni, in coals were determined. A comparison of ranges and means of elemental concentrations in Santa Catarina, Brazil, and world coals shows that the ranges of most elements in Santa Catarina coal are very close to the usual worldwide concentration ranges in coal.

Keywords

Brazil coal mining Health Trace elements The environment 

Notes

Acknowledgments

The US Geological Survey conducted most of the chemical analyses as part their World Coal Quality Inventory project (WoCQI: Finkelman 2000). We thank Susan Tewalt of the USGS for her cooperation and we are grateful to Mr. Marcio Pink for invaluable collaboration in the structural work.

References

  1. ABNT (Associação Brasileira de Normas Técnicas). (1983). Amostragem de carvão bruto e ou beneficiado. NBR 8291, Associação Brasileira de Normas Técnicas, Rio de Janeiro.Google Scholar
  2. American Society for Testing and Materials (ASTM). (1991). Annual book of ASTM standards, section 5, petroleum products, lubricants and fossil fuels, volume 05.05 gaseous fuels, coal and coke, D 2797: Standard practice for preparing coal samples for microscopical analysis by reflected light (pp. 308–310). American Society for Testing and Materials.Google Scholar
  3. American Society for Testing and Materials (ASTM). (1996). Standard test methods for collection of a gross sample of coal (D2234-89). In Annual book of ASTM standards: Gaseous fuels; coal and coke, v 5.05 (pp. 236–247). West Conshohocken, PA: American Society for Testing and Materials.Google Scholar
  4. Belolli, M. (2002). A história do carvão de Santa Catarina. Florianópolis, Brazil: Imprensa Oficial do Estado de Santa Catarina.Google Scholar
  5. Borda, M., Elsetinow, A., Schoonen, M., & Strongin, D. (2001). Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early Earth. Astrobiology, 1(3), 283–288. doi: 10.1089/15311070152757474.CrossRefGoogle Scholar
  6. BRAZIL. (1987). Perfil Analítico do Carvão. Porto Alegre. Boletim (Vol. 6). Porto Alegre, Brazil: Departamento Nacional de Produção Mineral.Google Scholar
  7. Briggs, P. H. (1997). Determination of 25 elements in coal ash from 8 argonne premium coal samples by inductively coupled argon plasma-mass spectrometry. In C. A. Palmer (Ed.), The chemical analysis of argonne premium coal samples (Vol. 2144, pp. 39–43). U.S. Geological Survey Bulletin.Google Scholar
  8. Cohn, C. A., Borda, M. J., & Schoonen, M. A. (2004). RNA decomposition by pyrite-induced radicals and possible role of lipids during the emergence of life. Earth and Planetary Science Letters, 225(3–4), 271–278. doi: 10.1016/j.epsl.2004.07.007.CrossRefGoogle Scholar
  9. Cohn, C., Mueller, S., Wimmer, E., Leifer, N., Greenbaum, S., Strongin, D. R., et al. (2006). Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochemical Transactions, 7, 3. doi: 10.1186/1467-4866-7-3.CrossRefGoogle Scholar
  10. Cohn, C. A., Pak, A., Schoonen, M. A. A., & Strongin, D. R. (2005). Quantifying hydrogen peroxide in iron-containing solutions using leuco crystal violet. Geochemical Transactions, 6(3), 47–52. doi: 10.1186/1467-4866-6-47.CrossRefGoogle Scholar
  11. CPRM. http://www.cprm.gov.br/coluna/index.html/. Accessed 20 July 2006.
  12. DNPM. (1996). Informativo anual da Indústria carbonífera, 89 pp.Google Scholar
  13. Fiedler, H. D. (1987). Caracterização do carvão de Candiota e implicações ambientais do seu processamento. Master’s thesis, Federal University of Rio Grande do Sul, Brazil.Google Scholar
  14. Finkelman, R. B. (1993). Trace and minor elements in coal. In M. H. Engel & S. A. Macko (Eds.), Organic geochemistry (pp. 593–607). New York: Plenum.Google Scholar
  15. Finkelman, R. B. (1994). Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Processing Technology, 39, 21. doi: 10.1016/0378-3820(94)90169-4.CrossRefGoogle Scholar
  16. Finkelman, R. B. (1995). Modes of occurrence of environmentally sensitive trace elements in coal. In D. J. Swaine & F. Goodarzi (Eds.), Environmental aspects of trace elements in coal (Chap. 3, pp. 24–50). Dordrecht: Kluwer.Google Scholar
  17. Finkelman, R. B. (2000). The world coal quality inventory, U.S. Geological Survey fact sheet 155-00.Google Scholar
  18. Finkelman, R. B., Belkin, H. E., & Centeno, J. A. (2006). Health impacts of coal: Should we be concerned? Geotimes, 51, 24–28.Google Scholar
  19. Hu, J. B. B., Zheng, B., Finkelman, R. B., Wang, B., Wang, M., Li, S., et al. (2006). Concentration and distribution of sixty-one elements in coals from DPR Korea. Fuel, 85(5–6), 679–688. doi: 10.1016/j.fuel.2005.08.037.CrossRefGoogle Scholar
  20. Kagey, B. T., & Wixson, B. G. (1983). Health implications of coal development. In I. Thornton (Ed.), Applied environmental geochemistry (pp. 463–480). New York: Academic.Google Scholar
  21. Kalkreuth, W., Holz, M., Kern, M., Machado, G., Mexias, A., Silva, M. B., et al. (2006). Petrology and chemistry of Permian coals from the Paraná Basin: 1. Santa Terezinha, Leão-Butiá and Candiota Coalfields, Rio Grande do Sul, Brazil. International Journal of Coal Geology, 68(1), 79–116. doi: 10.1016/j.coal.2005.10.006.CrossRefGoogle Scholar
  22. Kalkreuth, W. B. B., Sherwood, N., Cioccari, G., Corrêa, Z., Silva, M., Zhong, N., et al. (2004). The application of FAMM (fluorescence alteration of multiple macerals) analyses for evaluating rank of Paraná Basin coals, Brazil. International Journal of Coal Geology, 57, 167–185. doi: 10.1016/j.coal.2003.12.001.CrossRefGoogle Scholar
  23. Liu, G. J., Vassilev, S. V., Gao, L. F., Zheng, L. G., & Peng, Z. C. (2005). Energy conversion and management, 46, 2001. doi: 10.1016/j.enconman.2004.11.002
  24. Meier, A. L. (1997). Determination of 33 elements in coal ash from 8 argonne premium coal samples by inductively coupled argon plasma-mass spectrometry. In C. A. Palmer (Ed.), The chemical analysis of argonne premium coal samples (Vol. 2144, pp. 45–50). U.S. Geological Survey Bulletin.Google Scholar
  25. Nunes, A. V., Muller, E., & Santos, M. A. M. (1990). Diagnóstico do carvão mineral catarinense. Florianópolis: Imprensa Oficial do Estado de Santa Catarina. Secretaria do Estado da Ciência e Tecnologia, das Minas e Energia, 77 pp.Google Scholar
  26. O’Leary, R. M. (1997). Determination of mercury and selenium in eight argonne premium coal samples by cold-vapor and hydride-generation atomic absorption spectrometry. In C. A. Palmer (Ed.), The chemical analysis of argonne premium coal samples (Vol. 2144, pp. 51–55). U.S. Geological Survey Bulletin.Google Scholar
  27. Pike, S., Dewison, M. G., & Spears, D. A. (1989). Sources of error in low temperature plasma ashing processes for quantitative mineral analysis of coal ash. Journal of the Institute of Fuel, 68, 664–669. doi: 10.1016/0016-2361(89)90170-1.CrossRefGoogle Scholar
  28. Pires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60, 57–72. doi: 10.1016/j.coal.2004.04.003.CrossRefGoogle Scholar
  29. Putzer, H. (1952). Boletim Técnico da Divisão de Fomento da Produção Mineral do DNPM. Camadas de Carvão Mineral e seu Comportamento no Sul de Santa Catarina. Ro de Janeiro, boletim no 91, pp. 1–182.Google Scholar
  30. Querol, X., Cabrera, L., Pickel, W., López-Soler, A., Hagemann, H. W., & Fernández-Turiel, J. L. (1996). Geological controls on the quality of the Mequinenza subbituminous coal deposit, northeast Spain. International Journal of Coal Geology, 29, 67–91. doi: 10.1016/0166-5162(95)00009-7.CrossRefGoogle Scholar
  31. Querol, X., Whateley, M. K. G., Fernandez-Turiel, J. L., & Tuncali, E. (1997). Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. International Journal of Coal Geology, 33, 255–271. doi: 10.1016/S0166-5162(96)00044-4.CrossRefGoogle Scholar
  32. Ren, D. Y., Zhao, F. H., Wang, Y. Q., et al. (1999). Distributions of minor and trace element elements in Chinese coals. International Journal of Coal Geology, 40, 109–118. doi: 10.1016/S0166-5162(98)00063-9.CrossRefGoogle Scholar
  33. Scheibe, L. F. (2002). O carvão em Santa Catarina: Mineração e conseqüências ambientais. In E. C. Teixeira & M. J. R. Pires (Coord), Meio ambiente e carvão – impactos da exploração e utilização (pp. 45–68). Porto Alegre: Cadernos de Planejamento e Gestão Ambiental.Google Scholar
  34. Sekine, Y., Sakajiri, K., Kikuchi, E., & Matsukata, M. (2008). Release behavior of trace elements from coal during high-temperature processing. Powder Technology, 180(2), 210–215. doi: 10.1016/j.powtec.2007.03.012.CrossRefGoogle Scholar
  35. SIECESC. (2008). http://www.siecesc.com.br/. Accessed 18 June 2008.
  36. Silva, L. F. O. (2005). Chromium species in coal water and impacts for health human. In Proceedings of the International Workshop Medical Geology Metals, Health and the Environment, Rio de Janeiro, Brasil.Google Scholar
  37. Silva, L. F. O. (2006). Geochemical and variability of acid mine drainage (AMD) compositions. In Proceedings of the International Congress of Environment and Human Development: Biodiversity, Water Resources and Social Responsibility—Madehuman I, Salvador, Brazil.Google Scholar
  38. Silva, L. F. O., da Boit, K. M., & Oliveira, M. L. S. (2007). Prediction of induced health and environmental problems linking coal mining in Santa Catarina (Brazil). In Proceedings of the II International Congress of Environment and Human Development: Biodiversity, Water Resources and Social Responsibility, Foz do Iguaçu, Brazil.Google Scholar
  39. Silva, M. B., & Kalkreuth, W. (2005). Petrological and geochemical characterization of Candiota coal seams, Brazil—implication for coal facies interpretations and coal rank. International Journal of Coal Geology, 64, 217–238. doi: 10.1016/j.coal.2005.04.003.CrossRefGoogle Scholar
  40. Swaine, D. J. (1990). Trace elements in coal. London: Butterworths.Google Scholar
  41. Vassilev, S. V., & Tascon, J. M. D. (2003). Methods for characterization of inorganic and mineral matter in coal: A critical overview. Energy & Fuels, 17(2), 271–281. doi: 10.1021/ef020113z.CrossRefGoogle Scholar
  42. Ward, C. R. (2002). Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology, 50(1–4), 135–168. doi: 10.1016/S0166-5162(02)00117-9.CrossRefGoogle Scholar
  43. White, I. C. (1988). Relatório Final da Comissão de Estudos das Minas de Carvão de Pedra do Brazil, 1 de julho de 1904 a 31 de maio de 1906. Edição Fac-Similar. Seventh Gondwana Symposium, São Paulo, DNPM.Google Scholar
  44. Zhang, Y., Liu, G., Zheng, L., Chou, C., & Qi, C. (2007). Environmental geochemistry of selenium in Chinese coal. Kuangwu Yanshi Diqiu Huaue Tongbao, 26(4), 389–398.Google Scholar
  45. Zhao, A., Zhao, J., Tang, X. Y., & Huang, W. H. (2002). Abundance of trace elements in coal of China. Coal Geology of China, 14(Suppl.), 5–13 (in Chinese with English abstract).Google Scholar
  46. Zheng, G., Kuno, A., Mahdi, T. A., Evans, D. J., Miyahara, M., Takahashi, Y., et al. (2007). Iron speciation and mineral characterization of contaminated sediments by coal mining drainage in Neath Canal, South Wales, United Kingdom. Geochemical Journal, 41(6), 463–474.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • L. F. O. Silva
    • 1
    Email author
  • M. L. S. Oliveira
    • 2
  • K. M. da Boit
    • 3
  • R. B. Finkelman
    • 4
    • 5
  1. 1.Departmento de Química Orgánica, Facultad de QuiímicaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of Technological Sciences and Accurate SciencesUniversity of South of Santa CatarinaTubaraoBrazil
  3. 3.Departmento de Fisiologia, Faculta de MedicinaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  4. 4.U.S. Geological SurveyRestonUSA
  5. 5.Department of GeosciencesUniversity of Texas at DallasRichardsonUSA

Personalised recommendations