Skip to main content

Growth and metal accumulation response of Vigna radiata L. var PDM 54 (mung bean) grown on fly ash-amended soil: effect on dietary intake


Plants of Vigna radiata L. var. PDM 54 (mung bean) were grown in soil amended with different amounts (10 and 25%) of fly ash (FA). Although total metal content increased with increasing FA amendment, DTPA-extractable metals were higher for 10% FA. Accumulation of metals by the plants increased with increasing FA amendment and was greater in shoots than in roots (except for Mn and Cu) and seeds (except Mn). The total daily intake (TDI) of all the tested metals in seeds was within the recommended dietary allowance (RDA)/provisional tolerable daily intake (PTDI) for adults, except for Cd, which was higher than recommended values. Principal-components analysis (PCA) based on studies of physicochemical properties, DTPA-extractable metals, and metal accumulation in the different parts of V. radiata showed that physicochemical properties such as cation-exchange capacity, organic carbon, and organic matter had significant positive effects on accumulation of Cd, Co, Ni, and Pb by the plant, whereas EC had a significant negative effect. Although addition of fly ash (10%) initially increased the rate of growth, toxic symptoms were observed for 25% FA. Results from analysis of antioxidants (carotenoids, ascorbic acid, non-protein thiol, and free proline) revealed that these increased more in plants grown in 10% FA than in those grown in garden soil. Cysteine and malondialdehyde (MDA) content increased with increasing FA amendment. PCA also showed that all the antioxidants studied behaved similarly except cysteine, for which there was a close relationship with MDA content. Thus, the results obtained during this study revealed that V. radiata L. var. PDM 54 may be grown in 10% FA and/or contaminated agricultural soil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Diethylenetriaminepentaacetic acid


Total daily Intake




Principal-component analysis


Recommended dietary allowance


Provisional tolerable daily intake for adults (PTDI)


  1. Adriano, D. C., & Weber, J. T. (2001). Influence of fly ash on soil physical properties and turfgrass establishment. Journal of Environmental Quality, 30, 596–601.

    CAS  Article  Google Scholar 

  2. Arnon, D. I. (1949). Copper enzymes in isolated chloroplast, Polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  Google Scholar 

  3. Bates, L. S., Waldren, R. P., & Teare, J. D. (1973). Rapid determination of proline for water stress studies. Plant and Soil, 39, 205–207. doi:10.1007/BF00018060.

    Article  CAS  Google Scholar 

  4. Duxbury, A. C., & Yentsch, C. S. (1956). Plankton pigment monograph. Journal of Marine Research, 15, 92–101.

    CAS  Google Scholar 

  5. Ellman, G. L. (1959). Tissue sulfhydryl group. Archives of Biochemistry and Biophysics, 82, 70–77. doi:10.1016/0003-9861(59)90090-6.

    Article  CAS  Google Scholar 

  6. EPA, Environmental Protection Agency (2001). Integrated Risk Information System. IRIS from US: Available at http:www.epa.govyirisygloss8.htm) (Access on 29, October 2005).

  7. Gaitonde, M. K. (1967). A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. The Biochemical Journal, 104, 627–633.

    CAS  Google Scholar 

  8. Gupta, A. K., & Sinha, S. (2006a). Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: Selection of extractant for metal bioavailability. Journal of Hazardous Materials, 136(2), 371–378. doi:10.1016/j.jhazmat.2005.12.025

  9. Gupta, A. K., & Sinha, S. (2006b). Chromium levels in vegetables and grains grown on tannery effluent irrigated area of Jajmau, Kanpur (India): Influence on dietary intake. Bulletin of Environmental Contamination and Toxicology, 77, 658–664. doi:10.1007/s00128-006-1113-9.

    Article  CAS  Google Scholar 

  10. Halliwell, B., & Gutteridge, J. M. C. (2004). Free radicals in biology and medicine. Oxford: Clarendon Press.

    Google Scholar 

  11. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplast I. Kinetic and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198. doi:10.1016/0003-9861(68)90654-1.

    CAS  Google Scholar 

  12. Jala, S., & Goyal, D. (2006). Fly ash as a soil ameliorant for improving crop production—a review. Bioresource Technology, 97, 1136–1147. doi:10.1016/j.biortech.2004.09.004.

    Article  CAS  Google Scholar 

  13. Kabata-Pendias, A., & Pendias H. (2001). Trace elements in soils and plants. Boca Raton, FL: CRC Press.

    Google Scholar 

  14. Kalra, Y. P., & Maynard, D. G. (1991). Methods manual for forest soil and plant analysis. Forestry Canada, Northwest Region, Northern forest Centre, Edmonton, Alberta. Information Report NOR-X-319.

  15. Kavi Kishore, P. B., Sangam, S., Amrutha, R. N., Laxmi, P. S., Naidu, K. R., Rao, K. R. S. S., et al. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, 88, 424–438.

    Google Scholar 

  16. Keller, T., & Schwager, H. (1977). Air pollution and ascorbic acid. European Journal of Pathology, 7, 338–350.

    Article  CAS  Google Scholar 

  17. Kenneth, E., Pallet, K. E., & Young, J. (2000). Carotenoids antioxidants in higher plants. Ruth, G. Alscher (Eds.) (pp. 60–81). CRC Press: John L. Hess.

    Google Scholar 

  18. Kumar, A., Vajpayee, P., Ali, M. B., Tripathi, R. D., Singh, N., Rai, U. N., et al. (2002). Biochemical responses of Cassia Siamea Lamk.grown on coal combustion residue (fly-ash). Bulletin of Environmental Contamination and Toxicology, 68, 675–683. doi:10.1007/s001280307

    Google Scholar 

  19. Lawn, R. J., & Ahn, C. S. (1985). Mungbean (Vigna radiata (L.) wilczek/Vigna mungo (L) Hepper). In R. J. Summerfield & E. H. Robert (Eds.), Grain legume crops. London: Collins Professional and Technical Books.

    Google Scholar 

  20. Lindsay, W. L., & Norvell, W. A. (1978). Development of DTPA soil test for Zn, Mn and Cu. Soil Science American Journal, 42, 421–428.

    CAS  Google Scholar 

  21. McKenna, M., Chaney, R. L., & Williams, F. M. (1993). The effect of Cadmium and zinc interaction on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environmental Pollution, 79, 113–120. doi:10.1016/0269-7491(93)90060-2.

    Article  CAS  Google Scholar 

  22. Mittra, B. N., Karmakar, S., Swain, D. K., & Ghosh, B. C. (2005). Fly ash potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel, 84, 1447–1451. doi:10.1016/j.fuel.2004.10.019.

    Article  CAS  Google Scholar 

  23. Pesci, P., & Reggiani, R. (1992). The process of abscisic acid induced proline accumulation and the levels of polyamines and quaternary ammonium compounds in hydrated barley leaves. Physiologia Plantarum, 84, 134–139. doi:10.1111/j.1399-3054.1992.tb08775.x.

    Article  CAS  Google Scholar 

  24. Peterson, G. L. (1977). A simplification of the protein assay method of Lowery et al. which is more generally applicable. Analytical Biochemistry, 83, 346–346. doi:10.1016/0003-2697(77)90043-4.

    Article  CAS  Google Scholar 

  25. Raghunath, R., Tripathi, R. M., Suseela, B., Bhalke, S., Shukla, V. K., Puranik, V. D., et al. (2006). Dietary intake of metals by Mumbai adult population. The Science of the Total Environment, 356, 62–68. doi:10.1016/j.scitotenv.2005.04.035.

    Article  CAS  Google Scholar 

  26. Rai, U. N., Pandey, K., Sinha, S., Singh, A., Saxena, R., & Gupta, D. K. (2004). Revegetating fly ash landfills with Prosopis juliflora L.: Impact of different amendments and Rhizobium inoculation. Environment International, 30, 293–300. doi:10.1016/S0160-4120(03)00179-X

    Google Scholar 

  27. Sinha, S., & Gupta, A. K. (2005). Assessment of metals in leguminous green manuring plant of Sesbania cannabina L. grown on fly ash amended soil: effect on antioxidants. Chemosphere, 61, 1204–1214. doi:10.1016/j.chemosphere.2005.02.063.

    Article  CAS  Google Scholar 

  28. Sinha, S., Rai, U. N., Bhatt, K., Pandey, K., & Gupta, A. K. (2005). Fly-ash induced oxidative stress and tolerance in Prosopis juliflora L. grown on different amended substrates. Environmental Monitoring and Assessment, 102, 447–457. doi:10.1007/s10661-005-6397-4.

    Article  CAS  Google Scholar 

  29. Tripathi, R. D., Vajpayee, P., Singh, N., Rai, U. N., Kumar, A., Ali, M. B., et al. (2004). Efficacy of various amendments for amelioration of fly ash toxicity: growth performance and metal composition of Cassia siamea Lamk. Chemosphere, 54, 1581–1588. doi:10.1016/j.chemosphere.2003.09.043.

    Article  CAS  Google Scholar 

  30. Williams, I. E., Pitmann, J. K., & Hall, J. L. (2000). Emerging mechanism for heavy metal transport in plants. Biochimica et Biophysica Acta, 1465, 104–126. doi:10.1016/S0005-2736(00)00133-4.

    Article  CAS  Google Scholar 

  31. World Health Organization (1993). Evaluation of certain food additives and contaminants. Forty-first report of the joint FAO WHO expert committee on food additives, WHO Technical series no. 837. Geneva.

  32. World Health Organization (1996). Trace elements in human nutrition and health. ISBN: 92 4 156173 4 (NLM Classification: QU 130).

Download references


We thank the Director, National Botanical Research Institute, Lucknow (India), for providing required research facilities.

Author information



Corresponding author

Correspondence to Sarita Sinha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, A.K., Sinha, S. Growth and metal accumulation response of Vigna radiata L. var PDM 54 (mung bean) grown on fly ash-amended soil: effect on dietary intake. Environ Geochem Health 31, 463–473 (2009).

Download citation


  • Metals
  • Accumulation
  • Seeds
  • Antioxidants
  • DTPA
  • Vigna radiata
  • Principal-component analysis
  • Total daily intake