Environmental Geochemistry and Health

, Volume 30, Issue 6, pp 623–637 | Cite as

Soil pollution in day-care centers and playgrounds in Norway: national action plan for mapping and remediation

  • Rolf Tore Ottesen
  • Jan Alexander
  • Marianne Langedal
  • Toril Haugland
  • Erik Høygaard
Original Paper

Abstract

Systematic geochemical mapping based on sampling and analysis of surface soils (0–2 cm) has been carried out in several Norwegian cities. The soils in the oldest parts of the cities are contaminated with metals (especially Pb) and polycyclic aromatic hydrocarbons (PAH). Due to the fact that children are often in contact with surface soil, it was realized that special focus had to be directed towards soils in day-care centers and playgrounds. The first mapping and remedy program was initiated in Trondheim in 1996. Here, the importance of copper–chromium–arsenic (CCA)-pressure-impregnated wood in playing equipment as a pollution source for soils was documented, and a process was started with the aim to ban this product. Soils from day-care centers in the inner city of Bergen were polluted to a degree that required remediation in 45% out of 87 centers, mainly due to high concentrations of Pb and benzo(a)pyrene. In Oslo, 38% of 700 day-care centers needed remediation due to soil pollution by Pb, BaP, Cd, Hg, Ni and PCB. Removal of CCA-impregnated wood was necessary in more than half of the day-care centers The Norwegian parliament has decided to investigate all outdoor playing areas in day-care centers, playgrounds and schoolyards in Norway, starting in 2007 with day-care centers in the ten largest cities and five most important industrial areas. The Norwegian Institute of Public Health has developed quality criteria for soils in day-care centers and playgrounds for As, Cd, Cr6+, Hg, Ni, Pb, zinc, PAHsum16, benzo(a)pyrene, and PCBsum7. The Geological Survey of Norway has developed guidance for mapping of soil pollution (sampling, chemical analysis and reporting) in day-care centers. Especially the sampling strategy has been developed in the period 1996–2007, and the preferred sampling strategy is to collect at least 10 samples of surface soil (0–2 cm) from (1) “original soil” on the site, (2) artificial man-made “hills”, and (3) soils used for growing vegetables. A total number of 2,000 day-care-centres are to be investigated, and necessary remediation should be completed before the end of 2010.

Keywords

Children Norway Pressure-impregnated wood Soil pollution 

References

  1. Aceto, M., & Fedele, A. (1994). Rain water effect on the release of arsenic, chromium and copper from treated wood. Fresenius Environmental Bulletin, 3, 389–394.Google Scholar
  2. Ahlgren, M. (1996). Undersökning i Falun av markblyets biotilgänglighet (Investigations of the bioavailability of soil-lead in Falun). Uppsala: Uppsala Universitet: Ekotoxikologiska avdelingen nr 42 (in Swedish).Google Scholar
  3. Alexander, J. (2006). Anbefalte kvalitetskriterier for jord i barnehager, lekeplasser og skolegårder på basert på helsevurderinger (Health-based soil quality criteria for day-care centers playgrounds and schoolyards). Oslo:Nasjonalt folkehelseinstitutt (in Norwegian).Google Scholar
  4. Alexander, J. (2007). Anbefalte kvalitetskriterier for jord i barnehager, lekeplasser og skolegårder på industristeder basert på helsevurderinger (Health-based soil quality criteria for day-care centers playgrounds and schoolyards in industrial towns). Oslo: Nasjonalt folkehelseinstitutt (in Norwegian).Google Scholar
  5. Andersson, M., Ottesen, R. T., & Haugland, T. (2006). Overvåking av jordforurensnig i Trondheim 1994–2004 (Monitoring soil pollution in Trondheim 1994–2004) Trondheim: NGU-report 2006.033 (in Norwegian).Google Scholar
  6. Andersson, M., Ottesen, R. T., & Volden, T. (2004). Building materials as a source of PCB pollution in Bergen. Science of the Total Environment, 325, 139–144.CrossRefGoogle Scholar
  7. Bellinger, D., Levinton, A., & Slowman, J. (1990). Antecedents and correlates of improved cognitive performance in children exposed of in utero to low levels of lead. Environmental Health Perspective, 89, 5–11.CrossRefGoogle Scholar
  8. Berglund, M., Fahlgren, L., Freland, M., & Vahter, M. (1994). Metaller i mark i Stockholms innerstad och kranskommuner—förekomst och hälsorisker för barn (Metals in soil in central Stockholm and suburban areas—concentrations and health risks). Stockholm: Institutet för miljömedisin, Karoliska Institutet: IMM-report 2/94 (in Swedish).Google Scholar
  9. Birke, M., & Rauch, U. (1994). Geochemical investigation of the urban area of Berlin. Berlin: Federal Institute of Geosciences and Natural Resources, Branch Office Berlin.Google Scholar
  10. Birke, M., Rauch, U., & Helmert, M. (1992). Umweltgeokemie des Ballungsraumes Berlin-Schõneide: teil 1: Bearbeitungsmetodik–Elementverteilung in Bõden und Grundwassern. Zeitschrift für angewandte geologie, 38, 37–66. (In German).Google Scholar
  11. Bridges, E. M. (1991). Waste materials in urban soils. In P. Bullock & P. J. Gregory (Eds.), Soils in the urban environment (pp. 28–36). Blackwell Scientific Publications.Google Scholar
  12. Brockheim, J. G. (1974). Nature and properties of highly disturbed urban soils, Philadelphia, Pennsylvania. Paper presented before Div. S-5, Soil Science Society of America, Chicago Illinois.Google Scholar
  13. Calabrese, E. J., Barnes, R., Stanek, E. J., Pastides, H., Gilbert, C. E., Veneman, P., et al. (1989). How much soil do young children ingest: An epidemiologic study. Regulatory Toxicology and Pharmacology, 10, 123–139.CrossRefGoogle Scholar
  14. Chen, T. B., Wong, J. W. C., Zhou, H. Y., & Wong, M. H. (1997). Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environmental Pollution, 96, 61–68.CrossRefGoogle Scholar
  15. Dawson, B. S. W., Parker, G. F., Cowan, F. J., & Hong, S. O. (1991). Interlaboratory determination of copper, chromium and arsenic in timber treated with preservative. Analyst, 116, 339–346.CrossRefGoogle Scholar
  16. Dietrich, K. N., Sucop, P. A., Bornschein, R. L., Kraft, K. M., Berger, O., Hammond, P. B., et al. (1990). Lead exposure and neurobehavioral development in later infancy. Environmental Health Perspective, 89, 13–19.CrossRefGoogle Scholar
  17. Fossen, A. B. (1979). Bergen bys historie, Bind II (The history of Bergen, Vol. II). Bergen: Universitetsforlaget (in Norwegian).Google Scholar
  18. Haugland, T., Ottesen, R. T., Volden, T., Jartun, M. (2005). Jordforurensning i OBY-barnehager innenfor Ring 2 (Urban soil pollution in central city day-care centres, Oslo, Norway). Trondheim: NGU report 2005.064 (in Norwegan).Google Scholar
  19. Helle, K. (1982). Bergen bys historie, Bind I. (The history of Bergen, Vol. I). Bergen: Universitetsforlaget (in Norwegian).Google Scholar
  20. Hollis, J. M. (1991). The classification of soils in urban areas. In P. Bullock & P. J. Gregory (Eds.), Soils in the urban environment (pp. 5–27). Blackwell.Google Scholar
  21. Karlsaune, P. A. (1995). Reproduserbarhet av geokjemiske data fra en lokalitet med forurenset grunn. (Reproducibility of geochemical data from a polluted site). Trondheim: Institutt for geologi og bergteknikk. Norges Tekniske Høgskole (in Norwegian).Google Scholar
  22. Langedal, M., & Hellesnes, I. (1997). Innhold av tungmetaller i overflatejord og bakterier i sandkasser i barnehager i Trondheim (Content of heavy metals in surface soil and bacteria in sandboxes of the kindergartens in Trondheim: Health risk evaluation). Trondheim: Trondheim kommune, Miljøavdelingen, TM 97/03 (in Norwegian).Google Scholar
  23. Langedal, M. & Ottesen, R. T. (2001). Plan for forurenset grunn og sedimenter i Trondheim (Action plan for soilland sediment pollution). Trondheim:Trondheim kommune, Miljøavdelingen, TM 01/03 (in Norwegian).Google Scholar
  24. McMichael, A. J., Baghurst, P. A., Robertson, E. F., Vimpani, G. V., & Wigg, N. R. (1985). The Port Prie study: blood lead concentrations in early childhood. Medical Journal of Australia, 143, 499–503.Google Scholar
  25. Mielke, H. W., Berry, K. J., Mielke, P. W., Powell, E. T., & Gonzales, C. R. (2005). Multiple metal accumulation as a factor in learning achievement within various New Orleans communities. Environment Research, 97(1), 67–75.CrossRefGoogle Scholar
  26. Mielke, H. W., Gonzales, C. R., Powell, E. T., Jartun, M., & Mielke, P. W. (2007). Nonlinear association between soil lead and blood lead of children in metropolitan New Orleans, Louisana: 2000–2005. Science of the Total Environment, 388, 43–53.CrossRefGoogle Scholar
  27. Mielke, H. W., Gonzales, C. R., Powell, E. T., Shah, A., & Mielke, P. W. (2002). Natural and anthropogenic processes that concentrate Mn in rural and urban environments of the lower Mississippi River Delta. Environment Research, 90(2), 57–168.Google Scholar
  28. Mielke, H. W., Gonzales, C. R., Smith, M. K., & Mielke, P. W. (1999). The urban environment and children’s health: Soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana. U.S.A. Environmental Research Section A, 81, 117–129.CrossRefGoogle Scholar
  29. Mielke, H. W., & Reagan, P. L. (1998). Soil is an important pathway of human lead exposure. Environmental Health Perspectives, 106, 217–229.CrossRefGoogle Scholar
  30. Ottesen, R. T., Almklov P.G., Tijhuis, L. (1995). Innhold av tungmetaller og organiske miljøgifter i overflatejord fra Trondheim (Content of heavy metals and POPs in surface soil samples from Trondheim). Trondheim kommune, Miljøavdelingen, TM 95/06 (in Norwegian).Google Scholar
  31. Ottesen, R. T., Haugland, T., & Andersson, M. (2006a). Veileder for undersøkelse av jordforurensning i eksisterende barnehager og lekeplasser (Guidelines for soil pollution investigations in existing day-care centers and playgrounds). Oslo: Norwegian Pollution Control Authority, TA–2260/2007 (in Norwegian).Google Scholar
  32. Ottesen, R. T., Jordanger, T., Langedal, M., Andersson, M., & Haugland, T. (2006b). Veileder for undersøkelse av jordforurensning i nye barnehager (Guidelines for soil pollution investigations for establishing new day-care centers). Oslo: Norwegian Pollution Control Authority, TA-2261/2007 (in Norwegian).Google Scholar
  33. Ottesen, R. T., Haugland, T., & Andersson, M. (2006c). Mal for rapportering fra undersøkelse av jordforurensning i barnehager og på lekeplasser (Guidelines for reporting soil pollution investigations in day-care centers and playgrounds) Oslo: Norwegian Pollution Control Authority, TA-2262/2007 (in Norwegian).Google Scholar
  34. Ottesen, R. T., Haugland, T., & Andersson, M. (2006d). Veileder for undersøkelse av jordforurensning i barnehager og på lekeplasser på industristeder (Guidelines for soil pollution investigations in existing day-care centers and playgrounds in industrial towns). Oslo: Norwegian Pollution Control Authority, TA-2263/2007 (in Norwegian).Google Scholar
  35. Ottesen, R. T. & Volden, T. (1999). Jordforurensning i Bergen (Soil pollution in the city of Bergen). Trondheim: NGU-report 99.022 (in Norwegian).Google Scholar
  36. Ottesen, R. T., Volden,T., Finne, T. E., Alexander, J. (1999a). Helserisikovurdering av arsen, bly og PAH fra jord og sand i barns lekemiljø. Forslag til tiltak (Health risk evaluation of As, Pb and PAH in soil and sand from childrens playgrounds. Proposals for measures). Trondheim: NGU-report 99.083 (in Norwegian).Google Scholar
  37. Ottesen, R. T., Volden,T., Finne, T. E., & Alexander, J. (1999b). Jordforurensning i Bergen—Undersøkelse av barnehager, barneparker og lekeplasser på Nordnes, Jekteviken og Dokken. Helserisikovurdering (Soil pollution in Bergen—Investigation of kindergartens, kinderparks and playgrounds in Nordnes, Jekteviken and Dokken areas. Health risk evaluation.). Trondheim: NGU-report 99.077 (in Norwegian).Google Scholar
  38. Ottesen, R. T., Volden, T., Finne, T. E., Alexander, J., Langedal, M., & Eide, L. (2000a). Soil pollution in Norwegian cities–state of pollution, sources and health risk. In W. Burghart & C. Dornauf (Eds.), First International Conference on Soils of Urban, Industrial, Traffic and Mining Areas (pp. 555–559). Essen, Germany: International Union of Soil Sciences (IUSS), University of Essen.Google Scholar
  39. Ottesen, R. T., Thijus, L., Flaten, T. P., & Steinnes, E. (2000b). Heavy metal contamination of surface soils in the city of Trondheim. In W. Burghart & C. Dornauf (Eds.), First International Conference on Soils of Urban, Industrial, Traffic and Mining Areas (pp. 611–616). Essen, Germany: International Union of Soil Sciences (IUSS), University of Essen.Google Scholar
  40. Ottesen, R. T., Langedal, M., Cramer, J., Elvebakk, H., Finne, T. E., Haugland, T., Jæger, Ø., Longva, O., Storsand, M., & Volden, T. (2000c). Forurenset grunn og sedimenter i Trondheim: Dataraport (Polluted soil and sediments in Trondheim municipality: Data report). Trondheim: NGU-report 2000.115 (in Norwegian).Google Scholar
  41. Reite, A. (1983). Trondheim. Beskrivelse til kvartærgeologisk kart 1621 IV - M 1:50 000 (Trondheim. Map of quarternary deposits with descriptions). Trondheim: Norges geologiske undersøkelse Skrifter 391 (in Norwegian).Google Scholar
  42. Reite, A., Sveian, H., & Erichsen, E. (1999). Trondheim fra istid til nåtid - landskapshistorie og løsmasser (Trondheim form the ice age to the present). Gråsteinen, 5, 1–40 (in Norwegian).Google Scholar
  43. Tihuis, L., Brattli, B., & Sæther, O. M. (2002). A geochemical survey of topsoil in the City of Oslo, Norway. Environmental Geochemistry and Health, 24, 67–94.CrossRefGoogle Scholar
  44. U.S. HUD. (1999). Requirements for notification, evaluation and reduction of lead-bases paint hazards in federally owned residential property and housing receiving federal assistance. Federal Register, 64(178), 50140–50231.Google Scholar
  45. U.S. EPA. (2001). Lead; identification of dangerous levels of lead, final rule. 40CFR745. Federal Register, 66, 6763–6765.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Rolf Tore Ottesen
    • 1
  • Jan Alexander
    • 2
  • Marianne Langedal
    • 3
  • Toril Haugland
    • 4
  • Erik Høygaard
    • 5
  1. 1.Geological Survey of NorwayNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Norwegian Institute of Public Health, OsloNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.TrondheimNorway
  4. 4.University of BergenBergenNorway
  5. 5.Norwegian Pollution Control AuthorityOsloNorway

Personalised recommendations