Advertisement

Environmental Geochemistry and Health

, Volume 30, Issue 4, pp 367–381 | Cite as

Erionite series minerals: mineralogical and carcinogenic properties

  • A. Umran Dogan
  • Meral Dogan
  • John A. Hoskins
Original Paper

Abstract

Erionite is a human and animal carcinogen and one of the most toxic minerals known. Erionite deposits have been reported in many countries; however, it is only in the area of three villages of Cappadocia, Turkey, that environmental exposure to erionite has been demonstrated to be the cause of an epidemic of the disease mesothelioma. In the USA, no cases of mesothelioma have been reliably proven to be the result of erionite exposure, though the possibility exists. Erionite samples from three villages of the Cappadocia region were characterized mineralogically and compared with three different standards from the USA. Micro morphological details of erionite minerals using a high-resolution field-emission SEM showed that microstructures of “bundles”, “fibers”, and “fibrils” are important physical properties of fibrous erionite minerals. Typical lung burden of erionite and asbestos fibers were compared in terms of number of fibers. Assuming the lung burden of fibers in a human mesothelioma victim is about 1 mg, and the hazardous fibers are approximately 1 μm in diameter and 10 μm long, that milligram contains approximately 40 million asbestos and 50 million erionite fibers. These microstructures of erionite minerals draw attention to the concepts of surface area or surface-area-to-volume ratio and their relationship to the carcinogenicity of the mineral. The larger surface area creates a wider platform for mineral–cell interaction and thus more possibilities of proliferative transformation of mesothelial cells. Consequently, understanding the exact mineralogical properties will help determination of the true carcinogenic mechanism(s) of the mineral for prevention and possibly treatment of malignant mesothelioma.

Keywords

Cappadocia Carcinogenicity Carcinogenic properties Erionite Mesothelioma Mineralogical properties Turkey USA 

Notes

Acknowledgements

The authors gratefully acknowledge Professors Robert L. Brenner of University of Iowa, USA, Wayne Criss of Hacettepe University, and Semra Sardas of Marmara University, Turkey; and anonymous reviewers for critically reading the manuscript. Their critiques helped to improve the manuscript.

References

  1. Aiello, R., & Barrer, R. M. (1970). Hydrothermal chemistry of silicates. Part XIV Zeolite crystallization in presence of mixed bases. Journal of the Chemical Society London, Sec A, 1470–1475.Google Scholar
  2. Alberti, A., Martucci, A., Galli, E., & Vezzalini, G. (1997). A reexamination of the crystal structure of erionite. Zeolites, 19, 349–352.CrossRefGoogle Scholar
  3. Artvinli, M., & Baris, Y. I. (1979). Malignant mesothelioma in a small village in the Anatolian region of Turkey: An epidemiological study. Journal of the National Cancer Institute, 63, 17–22.Google Scholar
  4. Artvinli, M., & Baris, Y. I. (1982). Environmental fibre-induced pleura-pulmonary diseases in an Anatolian village: An epidemiological study. Archives of Environmental Health, 37, 177–181.Google Scholar
  5. Artvinli, M., & Baris, Y. I. (1985). Erionite related disease in Turkey. In E. G. Beck, & J. Bignon (Eds.), In vitro effects of mineral dusts, NATO ASI series (pp. 515–519). Berlin: Springer, G3.Google Scholar
  6. Baris, Y. I. (1991). Fibrous zeolite (erionite) related diseases in Turkey. American Journal of Industrial Medicine, 19(3), 374–378.CrossRefGoogle Scholar
  7. Baris, Y. I., Artvinli, M., & Sahin, A. A. (1979). Environmental mesothelioma in Turkey. Annual Academy of Science, 330, 423–432.CrossRefGoogle Scholar
  8. Baris, Y. I., Sahin, A. A., Ozesmi, M., Kerse, I., Ozen, E., Kolacan, B., Altinors, M., & Goktepeli, A. (1978). An outbreak of pleural mesothelioma and chronic fibrosing pleurisy in the village of Karain/Urgup in Anatolia. Thorax, 33, 181–192.CrossRefGoogle Scholar
  9. Baris, Y. I., Saracci, R., Simonato, L., Skidmore, J. W., & Artvinli, M. (1981). Malignant mesothelioma and radiological chest abnormalities in two villages in central Turkey: An epidemiological and environmental investigation. Lancet, 2, 984–987.CrossRefGoogle Scholar
  10. Baris, Y. I., Simonato, L., Artvinli, M., Pooley, F., Saracci, R., Skidmore, J., & Wagner, C. (1987). Epidemiological and environmental evidence of the health effects of exposure to erionite fibres: A four-year study in the Cappadocian region of Turkey. International Journal of Cancer, 39, 10–17.CrossRefGoogle Scholar
  11. Bennett, J. M., & Gard, J. A. (1967). Non-identity of the zeolites erionite and offretite. Nature, 214, 1005–1006.CrossRefGoogle Scholar
  12. Bertino, P., Marconi, A., Palumbo, L., Bruni, B. M., Barbone, D., Germano, S., Dogan, A. U., Tassi, G. F., Porta, C., Mutti, L., & Gaudino, G. (2007). Erionite and asbestos differently cause transformation of human mesothelial cells. International Journal of Cancer, 121(1), 2766–2774.CrossRefGoogle Scholar
  13. Boles, J. R., & Surdam, R. C. (1979). Diagenesis of volcanogenic sediments in a Tertiary saline lake, Wagon Bed Formation, Wyoming. American Journal of Science, 279, 832–853.CrossRefGoogle Scholar
  14. Boman, G., Schubert, V., Svane, B., Westernholm, P., Bolinder, E., Rohl, A. N., & Rischbein, A. (1982). Malignant mesothelioma in Turkish immigrant residing in Sweden. Scandinavian Journal of Workers Environmental Health, 8, 108–112.Google Scholar
  15. Carbone, M., Emri, S., Dogan, A. U., Steele, I., Tuncer, M., Pass, H. I., & Baris, Y. I. (2007). A mesothelioma epidemic in Cappadocia: Scientific developments and unexpected social outcomes. Nature Reviews Cancer, 7, 147–154.CrossRefGoogle Scholar
  16. Carbone, M., Kratzke, R. A., & Testa, J. R. (2002). The Pathogenesis of Mesothelioma. Seminars in Oncology, 29(1), 2–17.CrossRefGoogle Scholar
  17. Carbone, M., Setlak, P., Bocchetta, M., Rizzo, P., Emri, S., Baris, Y. I., Pass, H. I., Testa, J. R., & Dogan, A. U. (2001). Genetic Susceptibility to Mesothelioma. In G. A. Peters, & B. J. Peters (Eds.), The asbestos legacy—the sourcebook on asbestos diseases (Vol. 23, pp. 151–168), LexisNexis, Release no. 23, December 2001, Pub. 82410, Matthew Bender & Co. Inc.Google Scholar
  18. Carthew, P., Hill, R. J., Edwards, R. E., & Lee, P. N. (1992). Intrapleural administration of fibres induced mesothelioma in rats in the same relative order of hazard as occurs in man after exposure. Human Experimental Toxicology, 11, 530–534.Google Scholar
  19. Casey, K. R., Moatamed, F., Shigeoka, J., & Rom, W. N. (1981). Demonstration of fibrous zeolite in pulmonary tissue. American Review of Respiratory Diseases, 123, 98 (abstract).Google Scholar
  20. Casey, K. R., Shigeoka, J., Rom, W. N., & Moatamed, F. (1985). Zeolite exposure and associated pneumoconiosis. Chest, 87, 837–840.CrossRefGoogle Scholar
  21. Clifton, R. A. (1984). Other non-metals. In Minerals yearbook, Vol. 1. Metals and minerals (pp. 1030–1034). Washington, DC: U.S. Bureau of Mines, U.S. Government Printing Office.Google Scholar
  22. Clifton, R. A. (1985). Other non-metals. In Minerals yearbook, Vol. 1. Metals and minerals. Washington, DC: U.S. Bureau of Mines, U.S. Government Printing Office.Google Scholar
  23. Clifton, R. A. (1986). Other non-metals. In Minerals yearbook, Vol. 1. Metals and Minerals. Washington, DC: U.S. Bureau of Mines, U.S. Government Printing Office.Google Scholar
  24. Coombs, D. S., Alberti, A., Armbruster, T., Artioli, G., Cocella, C., Galli, E., Grice, J. D., Liebau, F., Mandarino, J. A., Minato, H., Nickel, E. H., Passaglia, E., Peacor, D. R., Quartieri, S., Rinaldi, R., Ross, M., Sheppard, R. A., Tillmanns, E., & Vezzalini, G. (1997). Recommended nomenclature for zeolite minerals: Report of the subcommittee on zeolites of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist, 33, 1571–1606.Google Scholar
  25. Davis, J. M. G., Bolton, R. E., Miller, B. G., & Niven, K. (1991). Mesothelioma dose response following intraperitoneal injection of mineral fibres. International Journal of Experimental Pathology, 72, 263–274.Google Scholar
  26. Dogan, A. U. (2003a). Mesothelioma in Cappadocian villages. Indoor and Built Environment, 12, 367–375.CrossRefGoogle Scholar
  27. Dogan, M. (2003b). Sources and types of mineral dust in regions of Turkey with endemic malignant mesothelioma. Indoor and Built Environment, 12(6), 377–383.CrossRefGoogle Scholar
  28. Dogan, A. U., Baris, Y. I., Dogan, M., Emri, S., Steele, I., Elmishad, A. G., & Carbone, M. (2006). Genetic predisposition to fiber carcinogenesis causes a mesothelioma epidemic in Turkey. Cancer Research, 66(10), 5063–5068.CrossRefGoogle Scholar
  29. Dogan, A. U., & Dogan, M. (2008). Re-evaluation and re-classification of eronite series minerals. Environmental Geochemistry and Health, doi: 10.1007/s10653-008-9163-z Google Scholar
  30. Dogan, A. U., Dogan, M., & Baris, Y. I. (2000). Environmental mineralogy and mesothelioma in Cappadocia region, Turkey. In The mediterranean: Culture, environment and society (pp. 145–148). Israel: University of Haifa. International Colloquium.Google Scholar
  31. Durnev, A. D., Daugel-Dauge, N. O., Korkina, L. G., & Seredenin, S. B. (1990). Peculiarities of the clastogenic properties of chrysotile-asbestos fibres and zeolite particles. Mutation Research, 319, 303–308.CrossRefGoogle Scholar
  32. Durnev, A. D., Suslova, T. B., Cheremisina, Z. P., Dobovskaya, O., Nigarrova, E. A., Korkina, L. G., Seredenin, S. B., & Velitchkovskij, B. T. (1993). Investigation of mutagenic action of natural zeolite and chrysotile-asbest dusts. Experimental Oncology, 12, 21–24.Google Scholar
  33. Emri, S., Demir, A., Dogan, M., Akay, H., Bozkurt, B., Carbone, M., & Baris, I. (2002). Lung diseases due to environmental exposures to erionite and asbestos in Turkey. Toxicology Letters, 127, 251–257.CrossRefGoogle Scholar
  34. EPA-US (1988). Environmental protection agency. Methodology for evaluating potential carcinogenicity in support of reportable quantity adjustments pursuant to CERCLA section 102. Environmental Protection Agency, Washington D.C. Office of Health and Environmental Assessment Report No. EPA/600/8–89/053.Google Scholar
  35. Gard, J. A., & Tait, J. M. (1973). Refinement of the crystal structure of erionite. In J. B. Uytterhoeven (Ed.), Proc 3rd Int Conf Mol Sieves (pp. 94–99). Leuven: Leuven University Press.Google Scholar
  36. Gualtieri, A., Artioli, G., Passaglia, E., Bigi, S., Viani, A., & Hanson, J. C. (1998). Crystal structure-crystal chemistry relationships in the zeolites erionite and offretite. American Mineralogist, 83, 590–606.Google Scholar
  37. Gude, A. J., & Sheppard, R. A. (1981). Woolly erionite from the Reese River zeolite deposit, Lander County, Nevada, and its relationship to other erionites. Clays and Clay Minerals, 29, 378–384.CrossRefGoogle Scholar
  38. Harada, K., Iwamoto, S., & Kihara, K. (1967). Erionite, phillipsite, and gonnardite in the amygdules of altered basalt from Maze, Niigata prefecture, Japan. American Mineralogist, 52, 1785–1794.Google Scholar
  39. Harben, P. W., & Bates, R. L. (1984). Geology of the non-metallics (pp. 311–316). Metal Bulletin, New York.Google Scholar
  40. Hey, M. H., & Fejer, E. E. (1962). The identity of erionite and offretite. Mineralogical Magazine, 33, 66–67.CrossRefGoogle Scholar
  41. Hill, R. J., Edwards, R. E., & Carthew, P. (1990). Early changes in the Pleural Mesothelium following Intrapleural Inoculation of the mineral fibre erionite and the subsequent development of mesotheliomas. Journal of Experimental Pathology, 71, 105–118.Google Scholar
  42. Hillerdal, G., & Baris, Y. I. (1983). Radiological study of pleural changes in relation to mesothelioma in Turkey. Thorax, 38, 443–448.Google Scholar
  43. IARC (1987a). International Agency for Research on Cancer. IARC Monographs on the evaluation of carcinogenic risks to humans. Silica and some silicates (Vol. 42, 289 pp.). Lyon, France.Google Scholar
  44. IARC (1987b). International Agency for Research on Cancer. IARC Monographs on the evaluation of carcinogenic risks to humans. Overall evaluations of carcinogenicity, Supplement 7 (440 pp.). Lyon, France.Google Scholar
  45. Kamb, W. B., & Oke, W. C. (1960). Paulingite, a new zeolite, in association with erionite and filiform pyrite. American Mineralogist, 45, 79–91.Google Scholar
  46. Kawahara, A., & Curien, H. (1969). La structure cristalline de l’érionite. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie, 92, 250–256.Google Scholar
  47. Kelsey, K. T., Yano, E., Liber, H. L., & Liftle, J. B. (1986). The in vitro genetic effects of fibrous erionite and crocidolite asbestos. British Journal of Cancer, 54, 107–114.Google Scholar
  48. Kemesis, P. (1999). No finale for phosphates. Chemical Week, 161(4), 31–32.Google Scholar
  49. Kerr, I. S., Gard, J. A., Barrer, R. M., & Galabova, I. M. (1970). Crystallographic aspects of the co-crystallization of zeolite L, offretite and erionite. American Mineralogist, 55, 441–454.Google Scholar
  50. Kokotailo, G. T., Sawruk, S., & Lawton, S. L. (1972). Direct observation of stacking faults in the zeolite erionite. American Mineralogist, 57, 439–444.Google Scholar
  51. Leanderson, P., & Tagesson, C. (1992). Hydrogen peroxide release and hydroxyl radical formation in mixtures containing mineral fibres and human neutrophils. British Journal of Industrial Medicine, 49, 745–749.Google Scholar
  52. Maltoni, C., & Minardi, F. (1988). First available results of long-term carcinogenicity bioassay on detergency zeolites (MS 4A and MS 5A). Annual New York Academy of Science, 534, 937–985.Google Scholar
  53. Maltoni, C., Minardi, F., & Morisi, L. (1982). Pleural mesotheliomas in Sprague-Dawley rats by erionite: First experimental evidence. Environmental Research, 29, 238–244.CrossRefGoogle Scholar
  54. Maples, K. R., & Johnson, N. F. (1992). Fibre-induced hydroxyl radical formation: Correlation with mesothelioma induction in rats and humans. Carcinogenesis, 13, 2035–2039.CrossRefGoogle Scholar
  55. Metintas, M., Hillerdal, G., & Metintas, S. (1999). Malignant mesothelioma due to environmental exposure to erionite: Follow-up of a Turkish emigrant cohort. European Respiratory Journal, 13(3), 523–526.CrossRefGoogle Scholar
  56. Mondale, K. D., Mumpton, F. A., & Aplan, F. F. (1978). Beneficiation of natural zeolites from Bowie, Arizona: A preliminary report. In L. B. Sand, & F. A. Mumpton (Eds.), Natural zeolites: Occurrence, properties, uses (pp. 527–537). New York: Pergamon Press.Google Scholar
  57. Mumpton, F. A. (1999). La roca magica: Uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Science USA, 96, 3463–3470.CrossRefGoogle Scholar
  58. Ozesmi, M., Hillerdal, G., Svave, B., & Widstrom, O. (1990). Prospective clinical and radiological study of zeolite-exposed Turkish immigrants in Sweden. Respiration, 57, 325–328.CrossRefGoogle Scholar
  59. Palekar, L. D., Eyre, J. F., Most, B. M., & Coffin, D. L. (1987). Metaphase and anaphase analysis of V79 cells exposed to erionite, UICC chrysotile and UICC crocidolite. Carcinogenesis, 8, 553–560.CrossRefGoogle Scholar
  60. Papke, K. G. (1972). Erionite and other associated zeolites in Nevada, Reno, NV. Nevada Bureau of Mines and Geology, 79, 32 pp.Google Scholar
  61. Passaglia, E., Artioli, G., & Gualtieri, A. (1998). Crystal chemistry of the zeolite erionite and offretite. American Mineralogist, 83, 577–589.Google Scholar
  62. Poole, A., Brown, R. C., Turner, C. J., Skidmore, J. W., & Griffiths, D. M. (1983). In vitro genotoxic activities of fibrous erionite. British Journal of Cancer, 47, 697–705.Google Scholar
  63. Rinaldi, R. (1976). Crystal chemistry and structural epitaxy of offretite-erionite from Sasbach, Kaiserstuhl. Neues Jahrbuch fur Mineralogie Monatshefte, 1974, 145–156.Google Scholar
  64. Rom, W. N., Casey, K. R., Parry, W. T., Mjaatvedt, C. H., & Moatamed, F. (1983). Health implications of natural fibrous zeolites for the Intermountain West. Environmental Research, 30(1), 1–8.CrossRefGoogle Scholar
  65. Sameshima, T. (1978). Zeolites in tuff beds of the Miocene Waitamata group, Auckland province, New Zealand. In L. B. Sand, & F. A. Mumpton (Eds.), Natural zeolites (pp. 309–318). Oxford: Pergamon.Google Scholar
  66. Schlenker, J. L., Pluth, J. J., & Smith, J. V. (1977). Dehydrated natural erionite with stacking faults of the offretite type. Acta Crystallographica, B33, 3265–3268.Google Scholar
  67. Sebastien, P., Gaudichet, A., Bignon, J., & Baris, Y. I. (1981). Zeolite bodies in human lungs from Turkey. Laboratory Investigation, 44(5), 420–425.Google Scholar
  68. Sheppard, R. A., & Gude, A. J. (1969). Chemical composition and physical properties of the related zeolites offretite and erionite. American Mineralogist, 54, 875–886.Google Scholar
  69. Sheppard, R. A., Gude, A. J., & Munson, E. L. (1965). Chemical composition of diagenetic zeolites from tuffaceous rocks of the Mojave Desert and vicinity, California. American Mineralogist, 50, 244–249.Google Scholar
  70. Simonato, L., Baris, Y. I., Saracci, R., Skidmore, J., & Winkelmann, R. (1989). Relation of environmental exposure to erionite fibres to risk of respiratory cancer. In J. Bignon, J. Peto, & R. Saracci (Eds.), Non-occupational exposure to mineral fibres (pp. 398–405). Lyon, France: IARC Sci Publ No. 90.Google Scholar
  71. Staples, L. W., & Gard, J. A. (1959). The fibrous zeolite erionite: Its occurrence, unit cell, and structure. Mineralogical Magazine, 32, 261–281.CrossRefGoogle Scholar
  72. Surdam, R. C., & Eugster, H. P. (1976). Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya. Geological Society of American Bulletin, 87, 1739–1752.CrossRefGoogle Scholar
  73. Suzuki, Y., & Kohyama, N. (1984). Malignant mesothelioma induced by asbestos and zeolite in the mouse peritoneal cavity. Environmental Research, 35, 277–292.CrossRefGoogle Scholar
  74. Tatrai, E., Bacsy, E., Karpati, J., & Ungary, G. (1992). On the examination of the pulmonary toxicity of mordenite in rats. Polish Journal of Occupational Medicine and Environmental Health, 5, 237–243.Google Scholar
  75. Tatrai, E., Wojnarovits, I., & Ungary, G. (1991). Non-fibrous zeolite induced experimental pneumoconiosis in rats. Experimental Pathology, 43, 41–46.Google Scholar
  76. Temel, A., & Gundogdu, M. N. (1996). Zeolite occurrences and the erionite-mesothelioma relationship in Cappadocia, Central Anatolia, Turkey. Mineralum Deposita, 31, 539–547.CrossRefGoogle Scholar
  77. Testa, J. R., Pass, H. I., & Carbone, M. (2001). Molecular biology of mesothelioma. In V. De Vita, S. Hellman, S. Rosenberg, & W. Williams (Eds.), Principles and practice of oncology (pp. 1937–1943). Philadelphia, PA: Lippincott.Google Scholar
  78. Tschernich, R. W. (1992). Zeolites of the world (563 pp.). Geoscience Press, Inc.Google Scholar
  79. Urano, N., Yano, E., & Evans, P. H. (1991). Reactive oxygen metabolites produced by the carcinogenic fibrous mineral erionite. Environmental Research, 54, 74–81.CrossRefGoogle Scholar
  80. Valamina, E., Pylev, L. N., & Lemiasev, M. F. (1994). Mutagenic activity of zeolite. Gigiena i Sanitariya (Moskow), 4, 65–67.Google Scholar
  81. Wagner, J. C., Skidmore, J. W., Hill, R. G., & Griffiths, D. M. (1985). Erionite exposure and mesothelioma in rats. British Journal of Cancer, 51, 727–730.Google Scholar
  82. Wagner, J. C., Sleggs, C. A., & Marchand, P. (1960). Diffuse pleural mesothelioma and asbestos exposure in northwestern Cape Province. British Journal of Industrial Medicine, 17, 260–271.Google Scholar
  83. Wise, W. S., & Tschernich, R. W. (1976). The chemical composition and origin of the zeolites offretite, erionite and levyne. American Mineralogist, 61, 853–863.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • A. Umran Dogan
    • 1
    • 2
  • Meral Dogan
    • 3
    • 4
  • John A. Hoskins
    • 5
  1. 1.Department of Geological EngineeringAnkara UniversityAnkaraTurkey
  2. 2.Department of Chemical and Biochemical EngineeringThe University of IowaIowa CityUSA
  3. 3.Department of Geological EngineeringHacettepe UniversityAnkaraTurkey
  4. 4.Department of Civil and Environmental EngineeringThe University of IowaIowa CityUSA
  5. 5.Independent ToxicologistHaslemereUK

Personalised recommendations