Skip to main content
Log in

Sorption of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) by clays and organoclays

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This study focused on the sorption isotherms of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (p,p′-DDT) and 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (p,p′-DDE) on different original clays (i.e., zeolite, montmorillonite and attapulgite) and organoclay complexes. Sorption of organic pollutants was determined using gas chromatographic (GC) techniques to investigate the sorption behavior, and characterize the effect of, different organic cations. The original clays only sorbed low amounts of p,p′-DDT and p,p′-DDE, and the sorptive curves can be classified as L-shaped. Organoclays exhibited higher amounts of p,p′-DDT and p,p′-DDE sorption. The p,p′-DDT and p,p′-DDE sorption increased with increasing total organic carbon (OC) content of the organoclays. For hexadecyltrimethylammonium (HDTMA)-modified organoclays, the dominant adsorptive medium showed the partitioning sorption of hydrophobic–hydrophobic interaction, indicating no competitive sorption. The sorptive curves can be classified as C-shaped of constant partition (CP). However, benzyltrimethylammonium (BTMA)-modified organoclays exhibited competitive sorption. The sorption isotherm curves can be classified as S-shaped. The sorptive capacity of the HDTMA-modified organoclays for p,p′-DDT were higher than those for p,p′-DDE, but the BTMA-modified organoclays showed a reverse trend. This can be attributed to the different structures and shapes of organic cations, giving different sorptive mechanisms. The p,p′-DDT and p,p′-DDE sorption onto HDTMA-modified organoclays were caused by chemical interaction, with the BTMA modified organoclays occuring due to physical sorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allred, B., & Brown, G. O. (1994). Surfactant-induced reductions in soil hydraulic conductivity. Ground-Water Management Research Spring, 15, 174–184.

    Article  Google Scholar 

  • Andrade, M. L., Reyzabal, M. L., Covelo, E. F., & Vega, F. A. (2005). Organochlorine pesticides in soils of the horticultural belt of Bahia Blanca (Argentina). Canadian Journal of Soil Science, 85, 273–282.

    CAS  Google Scholar 

  • Beck, A. J., Johnston, A. E. J., & Jones, K. C. (1993). Movement of noionic organic chemicals in agricultural region. Critical reviews in Environment Science Technology, 23, 248–319.

    Google Scholar 

  • Binelli, A., & Provini, A. (2003). DDT is still a problem in developed countries: The heavy pollution of Lake Maggiore. Chemosphere, 52, 717–723.

    Article  CAS  Google Scholar 

  • Chen, L. G., Ran, Y., Xing, B. S., Mai, B. X., He, J. H., Wei, X. G., Fu, J. M., & Sheng, G. Y. (2005). Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China. Chemosphere, 60, 879–890.

    Article  CAS  Google Scholar 

  • Gao, H. J., Jiang, X., Wang, F., Bian, Y. R., Wang, D. Z., Deng, J. C., & Yan, D. Y. (2005). Residual levels and new inputs of chlorinated POPs in agricultural soils from Taihu Lake region. Pedosphere, 15, 301–309.

    CAS  Google Scholar 

  • Giesy, J. P., & Kannan, K. (2001). Global distribution of perfluorooctane sulfonate in wildlife. Environmental Science Technology, 35, 1339–1342.

    Article  CAS  Google Scholar 

  • Giles, C. H., DSilva, A. P., & Easton, I. A. (1974). A general classification of the solute adsorption isotherms. Journal of Colloid and Interface Science, 47, 766–789.

    Article  CAS  Google Scholar 

  • Giles, C. H., MacEwan, T. H., Nakhwa, S. N., & Smith, D. (1960). Studies in sorption part XI. A system of classification of solution adsorption isotherms. Journal of Chemical Society, 786, 3373–3380.

    Google Scholar 

  • Hermosín, M. C., Celis, R., Facenda, G., Carrizosa, M. J., Ortega-Calvo, J. J., & Cornejo, J. (2006). Bioavailability of the herbicide 2,4-D formulated with organoclays. Soil Biology & Biochemistry, 382, 117–2124.

    Google Scholar 

  • Hsu, Y. H., Wang, M. K., Pai, C. W., & Wang, Y. S. (2000). Sorption of 2,4-dichlorophenoxy propionic acid by organo-clay complexes. Applied Clay Science, 16, 147–159.

    Article  CAS  Google Scholar 

  • Jaynes, W. F., & Boyd, S. A. (1991). Clay mineral type and organic compound sorption by hexadecyltrimethylammonium-exchanged clays. Soil Science Society America Journal, 55, 43–48.

    Article  CAS  Google Scholar 

  • Klumpp, E., Contreras-Ortega, C., & Klahre, P. (2004). Sorption of 2,4-dichlorophenol on modified hydrotalcites. Colloids and Surfaces A: Physicochemical Engineering Aspects, 230, 111–116.

    Article  CAS  Google Scholar 

  • Kosubova, P., Grabic, R., & Holoubek, I. (2005). Toxaphen and other chlorinated pesticides in the Czech mountain and lowland forest ecosystems. Fresenius Environmental Bulletin, 14, 160–166.

    CAS  Google Scholar 

  • Liao, C. J., Chen C. P., Wang, M. K., Chiang, P. N., & Pai, C. W. (2006). Sorption of chlorophenoxy propionic acid by organoclay complexes. Environmental Toxicology, 21, 71–79.

    Article  CAS  Google Scholar 

  • Nkedi, K. P., Rao, P. S. C., & Hornsby, A. G. (1985). Influence on organic cosolvents on sorption of hydrophobic organic chemicals by soils. Environment Science Technology, 19, 975–979.

    Article  Google Scholar 

  • Nzengung, V. A., Voudrias, E. A., Nkedi-Kizza, P., Wampler, J. M., & Weaver, C. E. (1996). Organic cosolvent effects on sorption equilibrium of hydrophobic organic chemicals by organoclays. Environmental Science Technology, 30, 89–96.

    Article  CAS  Google Scholar 

  • Oyanedel-Craver, V. A., Fuller, M., & Smith, J. A. (2006). Simultaneous sorption of benzene and heavy metals onto two organoclays. Journal of Colloid and Interface Science, 309, 485-492.

    Google Scholar 

  • Özcan, A., Ömeroğlu, Ç., Erdoğan, Y., & Özcan, A.Safa. (2006). Modification of bentonite with a cationic surfactant: An adsorption study of textile dye Reactive Blue 19. Journal of Hazardous Materials, 140, 173–179.

    Google Scholar 

  • Pernyeszi, T., Kasteel, R., Witthuhn, B., Klahre, P., Vereecken, H., & Klumpp, E. (2006). Organoclays for soil remediation: Adsorption of 2,4-dichlorophenol on organoclay/aquifer material mixtures studied under static and flow conditions. Applied Clay Science, 32, 179–189.

    Article  CAS  Google Scholar 

  • Redding, A. Z., Burns, S. E., Upson, R. T., & Anderson, E. F. (2002). Organoclay sorption of benzene as a function of total organic carbon content. Journal of Colloid and Interface Science, 250, 261–264.

    Article  CAS  Google Scholar 

  • Richard, W. G., Walter, J., & Weber. J. R. (2001). Evaluation of shale and organoclays as sorbent additives for low-permeability soil containment barriers. Environmental Science Technology, 35, 1523–1530.

    Article  CAS  Google Scholar 

  • Seki, Y., & Yurdakoc, K. (2005). Paraquat adsorption onto clays and organoclays from aqueous solution. Journal of Colloid and Interface Science, 287, 1–5.

    Article  CAS  Google Scholar 

  • Shen, G. Q., Lu, Y. T., Wang, M. N., & Sun, Y. Q. (2005). Status and fuzzy comprehensive assessment of combined heavy metal and organo-chlorine pesticide pollution in the Taihu Lake region of China. Journal of Environmental Management, 76, 355–362.

    Article  CAS  Google Scholar 

  • Shi, Y., Meng, F., Guo, F., Lu, Y., Wang, T., & Zhang, H. (2005). Residues of organic chlorinated pesticides in agricultural soils of Beijing, China. Archives of Environmental Contamination and Toxicology, 49, 37–44.

    Article  CAS  Google Scholar 

  • Shu, Y. H., & Jia, X. S. (2005). The mechanisms for CTMAB-bentonites to adsorb CBs from water in the adsorption kinetics and thermodynamics view. Acta Scientiae Circumstantiae, 25, 1530–1536.

    CAS  Google Scholar 

  • Smith, J. A., & Galan, A. (1995). Sorption of nonionic organic contaminants to single and dual organic cation bentonites from water. Environmental Science Technology, 29, 685–692.

    Article  CAS  Google Scholar 

  • Smith, J. A., Jaffe, P. R., & Chiou, C. T. (1990). Effect of ten quaternary ammonium cations on tetrachloromethane sorption to clay from water. Environmental Science Technology, 24, 1167–1172.

    Article  CAS  Google Scholar 

  • Socias-Viciana, M. M., Hermosin, M. C., & Cornejo, J. (1998). Removing prometrone from water by clays and organoclays. Chemosphere, 37, 289–300.

    Article  CAS  Google Scholar 

  • Sui, H., Li, X. G., Huang, G. Q., Zhang, Y., & Gao, X. F. (2003). The in-situ remediation technologies for soils contaminated by organic chemicals. Techniques and Equipment for Environmental Pollution Control, 4, 41–45.

    CAS  Google Scholar 

  • Tao, S., Xu, F. L., Wang, W. J., Liu, W. X., Gong, Z. M., Zhu, L. Z., & Luo, Y. M. (2005). Organochlorine pesticides in agricultural soil and vegetables from Tianjin, China. Environmental Science Technology, 39, 2494–2499.

    Article  CAS  Google Scholar 

  • Upson, R. T., & Burns, S. E. (2006). Sorption of nitroaromatic compounds to synthesized organoclays. Journal of Colloid and Interface Science, 297, 70–76.

    Article  CAS  Google Scholar 

  • Wang, X. R., Wu, S. N., & Li, W. S. (1997). Contaminated environment remediation with organoclay minerals. Environmental Chemistry, 16, 1–14.

    Article  Google Scholar 

  • Wiles, M. C., Huebner, H. J., McDonald, T. J., Donnelly, K. C., & Phillips, T. D. (2005). Matriximmobilized organoclay for the sorption of polycyclic aromatic hydrocarbons and pentachlorophenol from groundwater. Chemosphere, 59, 1455–1464.

    Article  CAS  Google Scholar 

  • Yasser, Z. El-N., & Jamal, M. S. (2004). Adsorption of phenanthrene on organoclays from distilled and saline water. Journal of Colloid and Interface Science, 269, 265–273.

    Article  CAS  Google Scholar 

  • Zhang, H., Lu, Y. L., Dawson, R. W., Shi, Y. J., & Wang, T. Y. (2005). Classification and ordination of DDT and HCH in soil samples from the Guanting Reservoir, China. Chemosphere, 60, 762–769.

    Article  CAS  Google Scholar 

  • Zhao, B. Z., Zhang, J. B., Zhou, L. Y., Zhu, A. N., Xia, M., & Lu, X. (2005). Residues of HCH and DDT in typical agricultural soils of Huang-Huai-Hai plain, China: Residues in surface soils and their isomeric composition. Acta Pedologica Sinica, 42, 761–768.

    CAS  Google Scholar 

  • Zhou, Q., Frost, R. L., He, H. P., & Xi, Y. F. (2006). Changes in the surfaces of adsorbed para-nitrophenol on HDTMA organoclay. The XRD and TG study. Journal of Colloid and Interface Science, 307, 50–55.

    Google Scholar 

  • Zhu, L. Z., Ma, D. D., & Chen, B. L. (2000). Sorption properties and mechanisms of phenanthrene to dual-cation organobentonites. Environmental Chemistry, 19, 256–261.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Key Basic Research Support Foundation (NKBRSF) of China (2002CB4108010) and Chinese Academy of Sciences (Project No. KSCX2-YW-N-038) grants supported for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang-Ya Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, RL., Zhang, GY., Gu, XZ. et al. Sorption of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) by clays and organoclays. Environ Geochem Health 30, 479–488 (2008). https://doi.org/10.1007/s10653-007-9130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-007-9130-0

Keywords

Navigation