Skip to main content
Log in

Water-soluble inorganic ions in airborne particulates from the nano to coarse mode: a case study of aerosol episodes in southern region of Taiwan

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In 2004, airborne particulate matter (PM) was collected for several aerosol episodes occurring in the southern region of Taiwan. The particulate samples were taken using both a MOUDI (Micro-orifice Uniform Deposit Impactor) and a nano-MOUDI sampler. These particulate samples were analyzed for major water-soluble ionic species with an emphasis to characterize the mass concentrations and distributions of these ions in the ambient ultrafine (PM0.1, diameter <0.1 μm) and nano mode (PMnano, diameter <0.056 μm) particles. Particles collected at the sampling site (the Da-Liao station) on the whole exhibited a typical tri-modal size distribution on mass concentration. The mass concentration ratios of PMnano/PM2.5, PM0.1/PM2.5, and PM1/PM2.5 on average were 1.8, 2.9, and 71.0%, respectively. The peak mass concentration appeared in the submicron particle mode (0.1 μm < diameter <1.0 μm). Mass fractions (percentages) of the three major water-soluble ions (nitrate, sulfate, and ammonium) as a group in PMnano, PM0.1, PM1, and PM2.5 were 18.4, 21.7, 50.0, and 50.7%, respectively. Overall, results from this study supported the notion that secondary aerosols played a significant role in the formation of ambient submicron particulates (PM0.1−1). Particles smaller than 0.1 μm were essentially basic, whereas those greater than 2.5 μm were neutral or slightly acidic. The neutralization ratio (NR) was close to unity for airborne particles with diameters ranging from 0.18 to 1 μm. The NRs of these airborne particles were found strongly correlated with their sizes, at least for samples taken during the aerosol episodes under study. Insofar as this study is exploratory in nature, as only a small number of particulate samples were used, there appears to be a need for further research into the chemical composition, source contribution, and formation of the nano and ultrafine mode airborne particulates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bastain, T. M., Gilliland, F. D., Li, Y. F., Saxon, A., & Diaz-Sanchez, D. (2003). Intraindividual reproducibility of nasal allergic responses to diesel exhaust particles indicates a susceptible phenotype. Clinical Immunology, 109, 130–136.

    Article  CAS  Google Scholar 

  • Biswas, P., & Wu, C. Y. (2005). Nanoparticles and the environment. Journal of Air & Waste Management Association, 55, 708–746.

    CAS  Google Scholar 

  • Brown, D. M., Wilson, M. R., MacNee, W., Stone, V., Donaldson, K. (2001). Size-dependent proinflammatory effects of ultra fine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultra fines. Toxicology and Applied Pharmacology, 175, 191–199.

    Article  CAS  Google Scholar 

  • Cabada, J. C., Rees, S., Takahama, S., Khlystov, A., Pandis, S., Davidson, C. I., & Robinson, A. L. (2004). Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh Supersite. Atmospheric Environment, 38, 3127–3141.

    Article  CAS  Google Scholar 

  • Chen, L. C., Peoples, S. M., & Amdur, M. O. (1991). Pulmonary effects of sulfur oxides on the surface of copper oxide aerosol. American Industrial Hygiene Association Journal, 52, 187–191.

    CAS  Google Scholar 

  • Cho, A., Stefano, E., You, Y., Rodriguez, C., Schmitz, D., Kumagai, Y., Miguel, A., Eiguren-Fernandez, A., Kobayashi, T., Avol, E., & Froines, J. (2004). Determination of four quinones in diesel exhaust particles, SRM 1649a, and atmospheric PM2.5. Aerosol Science and Technology, 38, 68–81.

    Article  CAS  Google Scholar 

  • Colbeck, I., & Harrison, R. M. (1984). Ozone-secondary aerosol-visibility relationships in north-west England. The Science of the Total Environment, 34, 87–100.

    Article  CAS  Google Scholar 

  • Dasch, J. M., & Cadle, S. H. (1990). The removal of nitric acid to atmospheric particles during a wintertime field study. Atmospheric Environment, 24A, 2557–2562.

    CAS  Google Scholar 

  • Geller, M. D., Kim, S., Misra, C., Sioutas, C., Olson, B. A, & Marple, V. A. (2002). A methodology for measuring size-dependent chemical composition of ultrafine particles. Aerosol Science and Technology, 36, 748–762.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Msibi, M. I., Kitto, A. M. N., & Yamulki, S. (1994). Atmospheric chemical transformations of nitrogen compounds measured in the North Sea Experiment, September 1991. Atmospheric Environment, 28, 1593–1599.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Shi, J. P., Xi, S., Khan, A., Mark, D., Kinnersley, R., & Yin, J. (2000). Measurement of number, mass and size distribution of particles in the atmosphere. Philosophical Transactions of the Royal Society A, 358, 2567–2579.

    Article  CAS  Google Scholar 

  • Hegg, D.A., Hobbs, P.V., 1982. Measurement of sulfate production in natural clouds. Atmospheric Environment, 16, 2663–2668.

    Article  CAS  Google Scholar 

  • Hu, M., He, L. Y., Zhang, Y. H., Wang, M., Kim, Y. P., & Moon, K. C. (2002). Seasonal variation of ionic species in fine particles at Qingdao, China. Atmospheric Environment, 36, 5853–5859.

    Article  CAS  Google Scholar 

  • Hughes, L. S., Cass, G. R., Gone, J., Ames, M., & Olmez, I. (1998). Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environmental Science & Technology, 32, 1153–1161.

    Article  CAS  Google Scholar 

  • Jonson, J. E., Semb, A., Barrett, K., Grini, A., & Tarrason, L. (2000). On the distribution of sea salt and sodium nitrate particles in Europe. Transport and chemical transportation in the troposphere, Proceedings of the EUROTRAC Symposium, Sixth, Gaimisch-Partenkirchen, Germany, 27–31 March 2000, pp. 695–699.

  • Katsouyanni, K., Touloumi, G., Samoli, E., Gryparis, A., Le Tertre, A., Monopolis, Y., Rossi, G., Zmirou, D., Ballester, F., Boumghar, A., Anderson, H.R., Wojtyniak, B., Paldy, A., Braunstein, R., Pekkanen, J., Schindler, C., Schwartz, J. (2001). Confounding and effect modification in the short term effects of ambient particles on total mortality: results from 29 European cities within APHEA2 project. Epidemiology, 12, 521–531.

    Article  CAS  Google Scholar 

  • Kerminen, V. M., & Wexler, A. S. (1995). Growth laws for atmospheric aerosol particles: An examination of bimodality of the accumulation mode. Atmospheric Environment, 29, 3263–3275.

    Article  CAS  Google Scholar 

  • Keywood, M. D., Ayers, G. P., Gras, J. L., Gillett, R. W., & Cohen, D. D. (1999). Relationships between size segregated mass concentration data and ultrafine particle number concentrations in urban areas. Atmospheric Environment, 33, 2907– 2913.

    Article  CAS  Google Scholar 

  • Kim, B. G., & Park, S. U. (2001). Transport and evolution of a winter-time yellow sand observed in Korea. Atmospheric Environment, 35, 3191–3201.

    Article  CAS  Google Scholar 

  • Krewski, D., Burnett, R., Goldberg, M., Hoover, B. K., Siemiatycki, J., Jerrett, M., Abrahamowicz, M., & White, W. (2003). Overview of the reanalysis of the Harvard six cities study and American Cancer Society study of particulate air pollution and mortality. Journal of Toxicology and Environmental Health. Part A, 66, 1507–1551.

    Article  CAS  Google Scholar 

  • Kreyling, W. G., Semmler, M., & Moller, W. (2004). Dosimetry and toxicology of ultrafine particles. Journal of Aerosol Medicine, 17, 140–152.

    Article  CAS  Google Scholar 

  • Kulmala, M. (2003). How particulates nucleate and growth. Science, 302, 1000–1001.

    Article  CAS  Google Scholar 

  • Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., Wang, M. Y., Oberley, T., Froines, J., & Nel, A. (2003). Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspectives, 111, 455–460.

    Article  CAS  Google Scholar 

  • Lin, C. C., Chen, S. J., Huang, K. L., Hwang, W. I., Chang-Chien, G. P., & Lin, W. Y. (2005). Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science & Technology, 39, 8113– 8122.

    Article  CAS  Google Scholar 

  • Lin, J. J. (2002a). Characterization of the major chemical species in PM2.5 in the Kaohsiung City, Taiwan. Atmospheric Environment, 36, 1911–1920.

    Article  CAS  Google Scholar 

  • Lin, J. J. (2002b). Characterization of water-soluble ion species in urban ambient particles. Environment International, 28, 55–61.

    Article  CAS  Google Scholar 

  • Lin J. J., & Lee L. C. (2004). Characterization of the concentration and distribution of urban submicron (PM1) aerosol particles. Atmospheric Environment, 38, 469–475.

    Article  CAS  Google Scholar 

  • Lippman, M., Schlesinger, R. B., Leikauf, G., Spektor, D., & Albert, R. E. (1982). Effects of sulphuric acid aerosols on respiratory tract airways. The Annals of Occupational Hygiene, 26, 677–690.

    Article  Google Scholar 

  • Matsumoto, K., & Tanaka, H. (1996). Formation and dissociation of atmospheric particulate nitrate and chloride: An approach based on phase equilibrium. Atmospheric Environment 30, 639–648.

    Article  CAS  Google Scholar 

  • Mehlmann, A., & Warneck, P. (1995). Atmospheric gaseous HNO3, particulate nitrate, and aerosol size distributions of major ionic species at a rural site in western Germany. Atmospheric Environment, 29, 2359–2373.

    Article  CAS  Google Scholar 

  • Miguel, A. H., Eiguren-Fernandez, A., Sioutas, C., Fine, P. M., Geller, M., & Mayo, P. R. (2005). Observations of twelve USEPA priority polycyclic aromatic hydrocarbons in the Aitken size range (10–32 nm Dp). Aerosol Science and Technology, 39, 415–418.

    Article  CAS  Google Scholar 

  • Ohta, S., & Okita, T. (1990). A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment 24A, 815–822.

    CAS  Google Scholar 

  • Ostro, B., Feng, W. Y., Broadwin, R., Green, S., Lipsett, M. (2007). The effects of components of fine particulate air pollution on mortality in California: results from CALFINE. Environmental Health Perspectives, 115, 13–19.

    Article  CAS  Google Scholar 

  • Pakkanen, T. A. (1996). Study of formation of coarse particle nitrate aerosol. Atmospheric Environment, 30, 2475–2482.

    Article  CAS  Google Scholar 

  • Pakkanen, T. A., Kerminen, V. M., Korhonen, C. H., Hillamo, R. E., Aarnio, P., Koskentalo, T., & Maenhaut, W. (2001). Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area. Atmospheric Environment, 35, 5381–5391.

    Article  CAS  Google Scholar 

  • Pandis, S. N., Seninfeld, J. H., & Pilinis, C. (1992). Heterogeneous sulfate production in an urban fog. Atmospheric Environment, 26A, 2509–2522.

    CAS  Google Scholar 

  • Parmar, R. S., Satsangi, G. S., Kumari, M., Lakhani, A., Srivastava, S. S., & Prakash, S. (2001). Study of size distribution of atmospheric aerosol at Agra. Atmospheric Environment, 35, 693–702.

    Article  CAS  Google Scholar 

  • Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality and long- term exposure to fine particulate air pollution. Journal of the Air & Waste Management Association, 287, 1132–1141.

    CAS  Google Scholar 

  • Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C. R., Cots, N., Massague, G., & Puig, O. (2001). PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment, 35, 6407–6419.

    Article  CAS  Google Scholar 

  • Samet, J.M., Dominici, F., Curriero, F.C., Coursac, I., Zeger, S.L. (2000). Fine particulate air pollution and mortality in 20 US cities, 1987–1994. The New England Journal of Medicine, 343, 1742–1799.

    Article  CAS  Google Scholar 

  • Schlesinger, R. B. (1989). Factors affecting the response of lung clearance systems to acid aerosols: Role of exposure concentration, exposure time, and relative acidity. Environmental Health Perspectives, 79, 121–126.

    Article  CAS  Google Scholar 

  • Schwartz, J. (2000). Harvesting and long term exposure effects in the relation between air pollution and mortality. American Journal of Epidemiology, 151, 440–448.

    CAS  Google Scholar 

  • Seaton A, MacNee W, Donaldson K, & Godden D. (1995). Particulate air pollution and acute health effects. Lancet, 345, 176–178.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics: From air pollution to global change. New York: John Wiley & Sons.

    Google Scholar 

  • Shrestha, A. B., Wake, C. P., Dibb, J. E., & Whitlow, S. I. (2002). Aerosol and precipitation chemistry at a remote Himalayan site in Nepal. Aerosol Science and Technology, 36, 441–456.

    Article  CAS  Google Scholar 

  • Taiwan Environmental Protection Administration. (2004) National Ambient Air Quality Standards. Taipei, Taiwan.

  • Tsai, J. H., Chang, K. L., Lin, J. J., Lin, Y. H., & Chiang, H. L. (2005). Mass-size distributions of particulate sulfate, nitrate, and ammonium in a particulate matter nonattainment region in southern Taiwan. Journal of the Air & Waste Management Association, 55, 502–509.

    CAS  Google Scholar 

  • Tsai, Y. I., & Cheng, M. T. (1999). Visibility and aerosol chemical compositions near the coastal area in central Taiwan. The Science of the Total Environment, 231, 37–51.

    Article  CAS  Google Scholar 

  • Wakamatsu, S., Utsunomiya, A., Han, J. S., Mori, A., Uno, I., & Uehara, K. (1996). Seasonal variation in atmospheric aerosols concentration covering northern Kyushu, Japan and Seoul, Korea. Atmospheric Environment, 30, 2343–2354.

    Article  CAS  Google Scholar 

  • Wall, S. M., John, W., & Ondo J. L. (1988). Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment, 22, 1649–1656.

    Article  CAS  Google Scholar 

  • Whitby, K. T., & Svendrup, G. M. (1980). California aerosols: Their physical and chemical characteristics. Advanced Environmental Science and Technology, 10, 477.

    CAS  Google Scholar 

  • Wilson, M. R., Lightbody, J. H., Donaldson, K., Sales, J., & Stone, V. (2002). Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicology and Applied Pharmacology, 184, 172–179.

    Article  CAS  Google Scholar 

  • Wolff, G. T. (1984). On the nature of nitrate in coarse continental aerosols. Atmospheric Environment, 18, 977–981.

    Article  Google Scholar 

  • Yao, X., Lau, A. P. S., Fang, M., Chan, C. K., & Hu, M. (2003). The size dependence of chloride depletion in fine and coarse sea-salt particles. Atmospheric Environment, 37, 743–751.

    Article  CAS  Google Scholar 

  • Zhang, D., Shi, G., Iwasaka, Y., Hu, M. (2000). Mixture of sulfate and nitrate in coastal atmospheric aerosols: individual particle studies in Qingdao (36°04′ N, 120°21′ E), China. Atmospheric Environment, 34, 2669–2679.

    Article  CAS  Google Scholar 

  • Zhuang, H., Chan, C. K., Fang, M., & Wexler, A. S. (1999). Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong. Atmospheric Environment, 33, 843–853.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Science Council of the R.O.C. (Taiwan) for financial support under Project No. NSC.92-2621-Z-006-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiun-Horng Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, LP., Tsai, JH., Chang, KL. et al. Water-soluble inorganic ions in airborne particulates from the nano to coarse mode: a case study of aerosol episodes in southern region of Taiwan. Environ Geochem Health 30, 291–303 (2008). https://doi.org/10.1007/s10653-007-9122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-007-9122-0

Keyword index

Navigation