Allen, A. S., & Schlesinger, W. H. (2004). Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biology and Biochemistry, 36, 581–589.
Article
CAS
Google Scholar
Barbhuiya, A. R., Arunachalam, A., Pandey, H. N., Arunachalam, K., Khan, M. L., & Nath, P. C. (2005). Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest. European Journal of Soil Biology, 40, 113–121.
Article
Google Scholar
Berg, M. P., Kniese, J. P., & Verhoef, H. A. (1998). Dynamic and stratification of bacteria and fungi in the organic layers of a scots pine forest soil. Biology and Fertility of Soils, 26, 313–322.
Article
Google Scholar
Bradley, R. L., & Fyles, J. W. (1995). Growth of paper birch (Betula papyrifera) seedings increases soil available C and microbial acquisition of soil nutrients. Soil Biology and Biochemistry, 27, 1565–1571.
Article
CAS
Google Scholar
Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837–842.
Article
CAS
Google Scholar
Carter, M. R., Gregorich, E. G., Angers, D. A., Beare, M. H., Sparling, G. P., Wardle, D. A., & Voroney, R. P. (1999). Interpretation of microbial biomass measurements for soil quality assessment in humid temperate regions. Canadian Journal of Soil Science, 79, 507–520.
Google Scholar
Chang, C. H., Hsieh, C. Y., & Yang, S. S. (2001). Effect of cultural media on the phosphate-solubilizing activity of thermo-tolerant microbes. Journal of the Biomass Energy Society of China, 20, 79–90.
Google Scholar
Chen, W. S., & Yang, S. S. (2000). Organic acid contents in Tatachia forest soils. Journal of the Experimental Forestry, National Taiwan University, 14, 99–108.
Google Scholar
Chow, M. L., Radomski, C. C., McDermott, J. M., Davies, J., & Axelrood, P. E. (2002). Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiology Ecology, 42, 347–357.
Article
CAS
Google Scholar
de Boer, W., Tietema, A., Gunnewick, P. J. A. K., & Laanbroek, H. J. (1992). The chemolithotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to pH-dependent nitrifying activity. Soil Biology and Biochemistry, 24, 229–234.
Article
Google Scholar
Dunbar, J., Takala, S., Barns, S. M., Davis, J. A., & Kuske, C. R. (1999). Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Applied and Environmental Microbiology, 65, 1662–1669.
CAS
Google Scholar
Fierer. N., Jackson, J. A., Vilgalys, R., & Jackson R. B. (2005). Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology, 71, 4117–4120.
Article
CAS
Google Scholar
Finlay, B. J. (2002). Global dispersal of free-living microbial eukaryote species. Science, 296, 1061–1063.
Article
CAS
Google Scholar
Fisk, M. C., Ruether, K. F., & Yavitt, J. B. (2003). Microbial activity and functional composition among northern peatland ecosystems. Soil Biology and Biochemistry, 35, 591–602.
Article
CAS
Google Scholar
Garten, C. T. Jr. (2004). Potential net soil N mineralization and decomposition of glycine-13C in forest soils along an elevation gradient. Soil Biology and Biochemistry, 36, 1491–1496.
Article
CAS
Google Scholar
Grayston, S. J., Vaughan, D., & Jones, D. (1996). Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology, 5, 29–56.
Article
Google Scholar
Hedlund, K. (2002). Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biology and Biochemistry, 34, 1299–1307.
Article
CAS
Google Scholar
Heyndrickx, M., Vaterin, L., Vandamme, P., Kersters, K., & De Vos, P. (1996). Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. Journal of Microbiological Methods, 26, 247–259.
Article
CAS
Google Scholar
Imberger, K. T., & Chiu, C. Y. (2001). Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region. Biology and Fertility of Soils, 33, 105–110.
Article
CAS
Google Scholar
Joergensen, R. G., Brooks, P. C., & Jenkinson, D. S. (1990). Survival of the soil biomass at elevated temperatures. Soil Biology and Biochemistry, 22, 1129–1139.
Article
Google Scholar
Krsek, M., & Wellington, E. M. H. (1999). Comparison of different methods for the isolation and purification of total community DNA from soil. Journal of Microbiological Methods, 39, 1–16.
Article
CAS
Google Scholar
Luizao, R. C. C., Bonde, T. A., & Rosswall, T. (1992). Seasonal variation of soil microbial biomass—the effect of clear felling in a tropical rain forest and establishment of pasture in the Central Amazon. Soil Biology and Biochemistry, 24, 805–813.
Article
Google Scholar
Maidak, B. L., Cole, J. R., Parker C. T. Jr., Garrity, G. M., Larsen, N., Li, B., Lilbum, T. G., McCaughey, M. J., Olsen, G. J., Overbeek, R., Pramanik, S., Schmidt, T. M., Tiedje, J. M., & Woese, C. R. (1999). A new version of the RDP (Ribosomal Database Project). Nucleic Acids Research, 27, 171–173.
Article
CAS
Google Scholar
Maithani, K., Tripathi, R. S., Arunachalam, A., & Pandey, H. N. (1996). Seasonal dynamics of microbial biomass C, N and P during regrowth of a disturbed subtropical humid forest in northeast India. Applied Soil Ecology, 4, 31–37.
Article
Google Scholar
Mandels, M., Mrdeiro, J. E., Andreotti, R. E., & Bisset, F. H. (1981). Evaluation of cellulose culture filtrates under use conditions. Biotechnology and Bioengineering, 23, 2009–2026.
Article
CAS
Google Scholar
Martikainen, P. J., & Palojarvi, A. (1990). Evaluation of the fumigation extraction method for determination of microbial C and N in a range of forest soils. Soil Biology and Biochemistry, 27, 797–802.
Article
Google Scholar
McCaig, A. E., Glover, L. A., & Prosser, J. I. (1999). Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied and Environmental Microbiology, 65, 1721–1730.
CAS
Google Scholar
Miethling, R., Wieland, G., Backhaus, H., & Tebbe, C. C. (2000). Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L 33. Microbial Ecology, 40, 43–56.
CAS
Google Scholar
Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54, 655–670.
Article
Google Scholar
Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In A. L. Page (Ed.), Methods of soil analysis: Part 2. Chemical and microbiological properties (2nd ed., pp. 539–580). Wisconsin: American Society of Agronomy.
Google Scholar
Priha, O., Grayston, S. J., Hiukka, R., Pennanen, T., & Smolander, A. (2001). Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biology and Fertility of Soils, 33, 17–24.
Article
CAS
Google Scholar
Raghubanshi, A. S. (1991). Dynamics of soil biomass C, N, and P in a dry tropical forest in India. Biology and Fertility of Soils, 12, 55–59.
Article
CAS
Google Scholar
Ranjard, L., Poly, F., & Nazaret, S. (2000). Monitoring complex bacterial communities using culture-independent molecular techniques: Application to soil environment. Research in Microbiology, 151, 167–177.
Article
CAS
Google Scholar
SAS Institute. (2002). SAS/STAT User’s guide, Release 6.03. NC: SAS Institute.
Google Scholar
Soil Survey Staff. (2003). Keys to soil taxonomy (9th ed.). Blacksburg: United States Department of Agriculture, Soil Conservation Service. http://www.soils.usda.gov/technical/classification/tax_keys/.
Srivastava, S. C., & Singh, J. S. (1988). Carbon and phosphorus in the soil biomass of some tropical soils of India. Soil Biology and Biochemistry, 20, 743–747.
Article
CAS
Google Scholar
Stackebrandt, E., Liesack, W., & Goebel, B. M. (1993). Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. The Federation of American Societies for Experimental Biology, 7, 232–236.
CAS
Google Scholar
Tietema, A., & Wessel, W. W. (1994). Microbial activity and leaching during initial oak leaf litter decomposition. Biology and Fertility of Soils, 18, 49–54.
Article
CAS
Google Scholar
Torsvik, V., Sorheim, R., & Goksoyr, J. (1996). Total bacterial diversity in soil and sediment communities—a review. Journal of Industrial Microbiology, 17, 170–178.
Article
CAS
Google Scholar
Toyota, K., & Kuninaga, S. (2006). Comparison of soil microbial community between soils amended with or without farmyard manure. Applied Soil Ecology, 33, 39–48.
Article
Google Scholar
Treves D. S., Xia, B., Zhou, J., & Tiedje, J. M. (2003). A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microbial Ecology, 45, 20–28.
Article
CAS
Google Scholar
Tsai, S. H., Selvam, A. & Yang, S. S. (2007). Microbial diversity of topographical gradient profiles in Fushan forest soils of Taiwan. Ecological Research (in press). DOI 10.1007/s11284–006–0323.2.
Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial C. Soil Biology and Biochemistry, 19, 703–707.
Article
CAS
Google Scholar
Watanabe, T., Aasakawa, S., Nakamura, A., Nagaoka, K., & Kimura, M. (2004). DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. FEMS Microbiology Letters, 232, 153–163.
Article
CAS
Google Scholar
Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R., & Brookes, P. C. (1990). Measurement of soil microbial biomass C by fumigation extraction—an autoclaved procedure. Soil Biology and Biochemistry, 22, 1167–1169.
Article
CAS
Google Scholar
Yang, C. K., & Yang, S. S. (2001). Microbial ecology of soils surrounding nuclear and thermal power plants in Taiwan. Environment International, 26, 315–322.
Article
CAS
Google Scholar
Yang, S. S., Chang, H. L., Wei, C. B., & Lin, H. C. (1991). Reduce waste production with modified Kjeldahl method for nitrogen measurement. Journal of the Biomass Energy Society of China, 10, 147–155.
Google Scholar
Yang, S. S., Fan, H. Y., Yang, C. K., & Lin, I. C. (2003). Microbial population of spruce soil in Tatachia mountain of Taiwan. Chemosphere, 52, 1489–1498.
Article
CAS
Google Scholar
Yang, S. S., Lai, C. M., Sun, L. Y., Luo, Y. C., Fan, H. Y., Yang, C. K., & Wei, C. B. (1998a). Microbial ecology of Tatachia mountain soil. Journal of the Chinese Agricultural Chemical Society, 36, 229–238.
Google Scholar
Yang, S. S., Lin, Y. C., Yang, C. K., Chang, E. H., & Wei, C. B. (1999). Microbial ecology of Hsieh-Ho thermal power plant and its surrounding area. Journal of Microbiology, Immunology and Infection, 32, 269–277.
CAS
Google Scholar
Yang, S. S., Sun, R. Y., Yang, C. K., Wei, C. B., Huang, R. Y., & Hsu, W. F. (1998b). Microbial population at nuclear power plant No. 2 and its surrounding areas. Journal of Environmental Protection Society of ROC, 21, 144–158.
Google Scholar
Yang, S. S., Tsai, S. H., Fan, H. Y., Yang, C. K., Huang, W. L., & Cho, S. T. (2006). Microbial population of hemlock soil in Tatachia mountain of Taiwan. Journal of Microbiology, Immunology and Infection, 39, 195–205.
Google Scholar
Zhou, J. Z., Xia, B. C., Treves, D. S., Wu, L. Y., Marsh, T. L., O’Neill, R.V., Palumbo A.V., & Tiedje, J. M. (2002). Spatial and resource factors influencing high microbial diversity in soil. Applied and Environmental Microbiology, 68, 326–334.
Article
CAS
Google Scholar