Skip to main content

Advertisement

Log in

Assessment of the chemical components of Famenin groundwater, western Iran

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The Faminin area in the semi-arid Hamadan state, western Iran is facing a serious deficiency in groundwater resources due to an increasing demand associated with rapid population growth and agricultural development. The chemical composition of 78 well samples throughout the Faminin area was determined with the aim of evaluating the concentration of the background ions and identifying the major hydrogeochemical processes that control the groundwater chemistry. The similarity between rock and groundwater chemistries in the recharge area indicates a significant rock-water interaction. The hydrochemical types Na–HCO3 and Na–SO4 are the predominate forms in the groundwater, followed by water types Ca–HCO3 and Na–Cl. The high values of electrical conductivity and high concentrations of Na+, Cl, SO 2−4 and NO 3 in the groundwater appeared to be caused by the dissolution of mineral phases and would appeared to be caused by anthropogenic activities, such as intense agricultural practices (application of fertilizers, irrigation practice), urban and industrial waste discharge, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams, S., Tredoux, G., Harris, C., Titus, R., & Pietersen, K. (2001). Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology, 241, 91–103.

    Article  CAS  Google Scholar 

  • Andre, L., Franceschi, M., Pouchan, P., & Atteia, O. (2005). Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. Journal of Hydrology, 305, 40–62.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (1996). Geochemistry, groundwater and pollution. Rotterdam: Balkema, 536 pp.

    Google Scholar 

  • Baharifar, A., Moinevaziri, H., Bellon, H., Pique, A. (2004). The crystalline complexes of Hamadan (Sanandaj-Sirjan zone, western Iran): metasedimentary Mezoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events. Comptes Rendus Geoscience, 336, 1443–1452.

    Article  CAS  Google Scholar 

  • Banks, D., Burke, S. P., & Gray, C. G. (1997). Hydrogeochemistry of coal mine drainage and other ferruginous waters in north Derbyshire and south Yorkshire, UK. Quarterly Journal of Engineering Geology, 30, 257–280.

    Google Scholar 

  • Banks, D., Parnachev, V. P., Frengstad, B., Holden, W., Karnachuk, O. V., & Vedernikov, A. A. (2004). The evolution of alkaline, saline ground- and surface waters in the southern Siberian steppes. Applied Geochemistry, 19, 1905–1926.

    Article  CAS  Google Scholar 

  • Berner, E. K., & Berner, R. A. (1987). The global water cycle. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Bohn, H. L., McNeal, B. L., & O’Connor, G .A. (1985). Soil chemistry. Wiley Interscience, 341 pp.

  • Cardona, A., Carrilo-Rivera, J. J., Huizer-Alvarez, R., & Graniel-Castro, E. (2004). Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico. Environmental Geology, 45, 350–366.

    Article  CAS  Google Scholar 

  • Dalai, T. K., Krishnaswami, S., & Sarin, M. M. (2002). Barium in the Yamuna River System in the Himalaya: Sources, fluxes, and its behavior during weathering and transport. Geochemistry Geophysics Geosystems, 3(12), 1076.

    Google Scholar 

  • Dixon, W., & Chiswell, B. (1992). The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers, southeast Queensland, Australia. Journal of Hydrology, 130, 299–338.

    Article  Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters (3rd ed.). New Jersey: Prentice Hall, 436 pp.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice Hall Inc., 604 pp.

  • Garcia, M. G., del v Hidalgo, M., & Blessa, M. A. (2001). Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeology Journal, 9, 597–610.

    Google Scholar 

  • Gibbs, R. J. (1970). Mechanism controling world water chemistry. Science, 17, 1088–1090.

    Article  Google Scholar 

  • Gimenez, E. (1994). Caracterizacion hidrogeoquimica de los procesos de salinizacion del aquifero detritico cotero de la Plana de Castellon (in Spanish). Ph.D. thesis, Universidad de Granada, Spain.

  • He, K., Stober, I., Bucher, K. (1999). Chemical evolution of thermal waters from limestone aquifers of the Southern Upper Rhine Valley. Applied Geochemistry, 14, 223–235.

    Article  CAS  Google Scholar 

  • Hidalgo, M. C., Cruz-Sanjulian, J. (2001). Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Applied Geochemistry, 16, 745–758.

    Article  CAS  Google Scholar 

  • Hidalgo, M. C., Cruz-Sanjulian, J., Sanroma, A. (1995). Evolucion geoquimica de las aguas subterraneas en una cuenca sedimentaria semiarida (acuifero de Baza-Caniles, Granada, Espana). Tierra y Tecnologia, 20, 39–48.

    Google Scholar 

  • Jalali, M. (2005a). Release kinetics of non-exchangeable potassium in calcareous soils. Communications in Soil Science and Plant Analysis, 36, 1903–1917.

    Article  CAS  Google Scholar 

  • Jalali, M. (2005b). Nitrates leaching from agricultural land in Hamadan, western Iran. Agriculture Ecosystems & Environment, 110, 210–218.

    Article  CAS  Google Scholar 

  • Jalali, M. (2005c). Major ion chemistry in the Bahar area, Hamadan, western Iran. Environmental Geology, 47, 763–772.

    Article  CAS  Google Scholar 

  • Jalali, M., & Khanlari, Z. V. (2006). Mobility and distribution of zinc, cadmium and lead in calcareous soils receiving spiked sewage sludge. Soil & Sediment Contamination, 15, 603–620.

    Google Scholar 

  • Magaritz, M., Nadler, A., Koyumdjisky, H., & Dan, N. (1981). The use of Na/Cl ratio to trace solute sources in a semiarid zone. Water Resources Research, 17, 602–608.

    CAS  Google Scholar 

  • Mathess, G. (1982). The properties of groundwater. New York: Wiley.

    Google Scholar 

  • McLean, W., Jankowski, J., & Lavitt, N. (2000). Groundwater quality and sustainability in an alluvial aquifer, Australia. In O. Sililo et al. (Eds.), Groundwater, past achievements and future challenges (pp. 567–573). Rotterdam: Balkema.

    Google Scholar 

  • Mercado, A. (1985). The use of hydrogeochemical patterns in carbonate sand sandstone aquifers to identify intrusion and flushing of saline water. Ground Water, 23, 635–645.

    Article  CAS  Google Scholar 

  • Merrikhpour, H., & Jalali, M. (2005). Effect of land use of wastewater on movement of some cations and anions through repacked soil columns’. In Proceedings of International Conference on Human Impacts on Soil Quality Attributes. Isfahan, Iran.

  • Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science V, 287, 401–428.

    Article  CAS  Google Scholar 

  • Njitchoua, R., Dever, L., Fontes, J. Ch., & Naah, E. (1997). Geochemistry, origin and recharge mechanisms of groundwaters from the Garoua Sandstone aquifer, northern Cameroon. Journal of Hydrology, 190, 123–140.

    Article  CAS  Google Scholar 

  • Pande, K., Sarin, M. M., Trivedi, J. R., Krishnaswami, S., & Sharma, K. K. (1994). The Indus River system (India-Pakistan). Major-ion chemistry, uranium and strontium isotopes. Chemical Geology, 116, 245–259.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2) – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water Resources Investigations Report. 99-4259, 310 pp.

  • Plummer, L., Busby, J., Lee, R., & Hanshaw, B. (1990). Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resources Research, 26, 1981–2014.

    Article  Google Scholar 

  • Richter, B. C., & Kreitler, W. C. (1993). Geochemical techniques for identifying sources of groundwater salinization. New York: CRC Press, ISBN 1-56670-000-0.

  • Rowell, D. L. (1994). Soil science: Methods and applications. Longman and Scientific Technical, 350 pp.

  • Sabziparvar, A. A. (2003). The analysis of aridity and meteorological drought indices in west of Iran. Research report. Bu-Ali Sina University, Hamadan, Iran.

  • Sami, K. (1992). Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern cape. South African Journal of Hydrology, 139, 27–48.

    CAS  Google Scholar 

  • Sepahi, A. (1999). Petrology of the Alvand plutonic complex with special reference on granitoids (In Persian). Ph.D. thesis, Tarbiat-Moallem University, Tehran, Iran, 348 pp.

  • Sikdar, P., Sarkar, S., & Palchoudhwy, S. (2001). Geochemical evolution of groundwater in the Quaternary aquifer of Calcutta and Howrah, India. Journal of Asian Earth Sciences, 19, 579–594.

    Article  Google Scholar 

  • Smolders, A. J. P., Hudson-Edwards, K. A., Van der Velde, G., & Roelofs, J. G. M. (2004). Controls on water chemistry of the Pilcomayo river (Bolivia, South-America). Applied Geochemistry, 19, 1745–1758.

    Article  CAS  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1987). Geochemistry of the Amazon 3. Weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research, 92, 8293–8302.

    Article  CAS  Google Scholar 

  • Stimson, J., Frape, S., Drimmie, R., & Rudolph, D. (2001). Isotopic and geochemical evidence of regional-scale anisotropy and interconnectivity of an alluvial fan system, Cochabamba Valey, Bolivia. Applied Geochemistry, 16, 1097–1114.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic Chemistry. New York: Wiley-Interscience.

    Google Scholar 

  • Taylor, S. R., & McLennan, M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell.

    Google Scholar 

  • Tesoriero, A. J., Spruill, T. B., & Eimers, J. L. (2004). Geochemistry of shallow ground water in coastal plain environments in the south-eastern United States: Implications for aquifer susceptibility. Applied Geochemistry, 19, 1471–1482.

    Article  CAS  Google Scholar 

  • Tijani, M. N. (1994). Hydrochemical assessment of groundwater in Moro area, Kwara State, Nigeria. Environmental Geology, 24, 194–202.

    Article  CAS  Google Scholar 

  • Tijani, M. N. (2004). Evolution of saline waters and brines in the Benue-Trough, Nigeria Applied Geochemistry, 19, 1355–1365.

    Article  CAS  Google Scholar 

  • Zhang, J., Huang, W. W., Letolle, R., & Jusserand, C. (1995). Major element chemistry of the Huanghe (Yellow River), China: Weathering processes and chemical fluxes. Journal of Hydrology, 168, 173–203.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Two anonymous reviewers made valuable comments on the manuscript. The author gratefully expresses his gratitude for their thoughtful and thorough reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Jalali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalali, M. Assessment of the chemical components of Famenin groundwater, western Iran. Environ Geochem Health 29, 357–374 (2007). https://doi.org/10.1007/s10653-006-9080-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-006-9080-y

Keywords

Navigation