Arsenic occurrence in Brazil and human exposure

Abstract

Environmental exposure to arsenic (As) in terms of public health is receiving increasing attention worldwide following cases of mass contamination in different parts of the world. However, there is a scarcity of data available on As geochemistry in Brazilian territory, despite the known occurrence of As in some of the more severely polluted areas of Brazil. The purpose of this paper is to discuss existing data on As distribution in Brazil based on recent investigations in three contaminated areas as well as results from the literature. To date, integrated studies on environmental and anthropogenic sources of As contamination have been carried out only in three areas in Brazil: (1) the Southeastern region, known as the Iron Quadrangle, where As was released into the drainage systems, soils and atmosphere as a result of gold mining; (2) the Ribeira Valley, where As occurs in Pb-Zn mine wastes and naturally in As-rich rocks and soils; (3) the Amazon region, including the Santana area, where As is associated with manganese ores mined over the last 50 years. Toxicological studies revealed that the populations were not exposed to elevated levels of As, with the As concentrations in surface water in these areas rarely exceeding 10 μg/L. Deep weathering of bedrocks along with formation of Fe/Al-enriched soils and sediments function as a chemical barrier that prevents the release of As into the water. In addition, the tropical climate results in high rates of precipitation in the northern and southeastern regions and, hence, the As contents of drinking water is diluted. Severe cases of human As exposure related to non-point pollution sources have not been reported in Brazil. However, increasing awareness of the adverse health effects of As will eventually lead to a more complete picture of the distribution of As in Brazil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    More recently, a new regulation was adopted by CONAMA (National Council for the Environment), Resolution 357 of March 17, 2005, which lowers the total As upper limit in fresh water to 10 μg As/L for some rivers and to 33 μg As/L for others.

References

  1. Abreu, M. C., & Figueiredo, B. R. (2004). Mapeamento geoquímico de arsênio e metais pesados em solo da unidade Piririca, Vale do Ribeira (SP). Proocedings of the 41th Brazxilian Geological Congress, João Pessoa Paraíba.

  2. Agency for Toxic Substances and Disease Registry (ATSDR). (2000) Toxicological profile for arsenic. U.S. Department of Health and Human Services, Public Health Service, Atlanta, Ga.

  3. Borba, R. P., & Figueiredo, B. F. (2004) A influência das condições geoquímicas na oxidação da arsenopirita e na mobilidade do Arsênio em ambientes superficiais tropicais. Revista Brasileira de Geociências 34(3), 489–500.

    Google Scholar 

  4. Borba, R. P., Figueiredo, B. R., Rawllins, B. G., & Matchullat J. (2000). Arsenic in water and sediment in the Iron Quadrangle, Minas Gerais state, Brasil. Revista Brasileira de Geociências 30(3), 554–557.

    Google Scholar 

  5. Borba, R. P., Figueiredo, B. R., & Matschullat, J. (2003) Geochemical distribution of arsenic in waters, sediments and weathered gold mineralizes rocks from Iron Quadrangle, Brazil. Environment Geology 44(1), 39–52.

    Google Scholar 

  6. Choucair, A. K., & Ajax, E. T. (1988). Hair and nails in arsenical neuropathy. Annals of Neurology 23(6), 628–629.

    Article  Google Scholar 

  7. Companhia de Pesquisa de Recursos Minerais (CPRM) (1982). Projeto Eldorado, Relatório Final Integrado de Pesquisa (Final Report), CPRM, São Paulo.

  8. Cunha, F. G. (2003). Contaminação Humana e Ambiental por Chumbo no Vale do Ribeira, nos Estados de São Paulo e Paraná, Brasil. PhD thesis, Instituto de Geociências, University of Campinas – UNICAMP.

  9. De Capitani, E. M., Sakuma, A. M., Paoliello, M. M. B., Figueiredo, B. R., Okada, I. A., Dduran, M. C., & Okura, R. I. (2005). Exposição humana ao arsênio no Médio Vale do Ribeira, São Paulo, Brasil. Proceedings of the International on Medical Geology, Rio de Janeiro, CPRM/SGB

  10. Deschamps, E., Ciminelli, V. S. T., Lange, F. T., Matschullat, J., Raue, B., & Schmidt, H. (2002) Soil and Sediment Geochemistry of the Iron Quadrangle, Brazil: The Case of Arsenic. Journal of soils and sediments, 2(4), 216–222.

    Google Scholar 

  11. Dissanayake, C. B., & Chandrajith, R. (1999) Medical geochemistry of tropical environments. Earth-Science Reviews 47, 219–258.

    Article  Google Scholar 

  12. Figueiredo, B. R., Cunha, F. G., Paoliello, M. M. B., Capitani, E. M., Sakuma, A., & Enzweiler, J. (2003). Environment and human exposure to lead, cadmium and arsenic in the Ribeira Valley, southeastern Brazil. Proceedings of the 6th International Symposium on Environmental Geochemistry, Edinburgh, Scotland, p. 49.

  13. Franzblau, A., & Lilis, R. (1989) Acute arsenic intoxication from environmental arsenic exposure. Archives of Environmental Health 44(6), 385–390.

    Article  Google Scholar 

  14. Granero, S., Lobet, J. M., Schuhmacher, M., Corbella, J., & Domingo, J. L. (1998). Biological monitoring of environmental pollution and human exposure to metals in Tarragona, Spain: I. Levels in hair of school children. Trace Elements and Electrolytes 1511, 839–843.

    Google Scholar 

  15. Guo, T., Baasner, J., & Tsalev, D. L. (1997) Fast automated determination of toxicologically relevant arsenic in urine by flow injection-hydride generation atomic absorption spectrometry. Analytica Chimica Acta 349(1–3), 313–318.

    Article  Google Scholar 

  16. Licht, O. B. (2001). A Geoquímica Multielementar na Gestão Ambiental – Identificação e caracterização de províncias geoquímicas naturais, alterações antrópicas da paisagem, áreas favoráveis à prospecção mineral e regiões de risco para a saúde no Estado do Paraná, Brasil. PhD thesis, Universidade Federal do Paraná.

  17. Lima, M. O. (2003). Caracterização geoquímica de arsênio total em águas e sedimentos em áreas de rejeitos de minérios de manganês no Município de Santana Estado do Amapá. MSc thesis, Universidade Federal do Pará.

  18. Mandal, B. K., & Suzuki, K. T. (2002) Arsenic round the world: a review. Talanta 58, 201–235.

    Article  Google Scholar 

  19. Mandal, B. K., Ogra, Y., Anzai, K., & Suzuki, K. T. (2004) Speciation of arsenic in biological samples. Toxicology and Applied Pharmacology 198, 307–318.

    Article  Google Scholar 

  20. Matschullat, J., Borba, R. P., Deschamps, E., Figueiredo, B. R., Gabrio, T., & Schwenk, M. (2000) Human and environmental contamination in the Iron Quadrangle, Brazil. Applied Geochemistry 15, 181–190.

    Article  Google Scholar 

  21. Oliveira, J. J. C., Ribeiro, J. H., Souza Oki, S., & Barros, J. R. R. (1979). Projeto Geoquímica do Quadrilátero Ferrífero: Levantamento orientativo e regional (in Portuguese). CPRM (Geological Survey of Brazil), final report (vol. I).

  22. Paoliello, M. M. B., Capitani, E. M., Cunha, F. G., Matsuo, T., Carvalho, M. F., Sakuma, A., & Figueiredo, B. R. (2002) Exposure of children to lead and cadmium from a mining area of Brazil. Environmental Research, Section A 88, 120–128.

    Article  Google Scholar 

  23. Paoliello, M. M. B., Capitani, E. M., Cunha, F. G., Carvalho, M. F., Matsuo, T., Sakuma, A., & Figueiredo, B. R. (2003) Determinants of blood lead levels in an adult population from a mining area in Brazil. Journal de Physique IV 107, 127–130.

    Article  Google Scholar 

  24. Pazirandeh, A., Brati, A. H., & Marageh, M. G. (1998) Determination of arsenic in hair using neutron activation. Applied Radiation and Isotopes 49, 753–759.

    Article  Google Scholar 

  25. Perrota, M. M. (1996). Potencial aurífero de uma região no Vale do Ribeira, São Paulo, estimado por modelagem de dados geológicos, geoquímicos, geofísicos e de sensores remotos num sistema de informações geográficas. PhD thesis, University of São Paulo.

  26. Saad, A., & Hassanien, M. A. (2001) Assessment of arsenic level in the hair of the nonoccupational Egyptian population: Pilot study. Environment International 27, 471–478.

    Article  Google Scholar 

  27. Sakuma, A.M.A. (2004). Avaliação da exposição humana ao arsênio no Alto Vale do Ribeira, Brasil, Tese de Doutorado, Faculdade de Ciências Médicas, UNICAMP, 161 p.

  28. Santos, E. C. O., Jesus, I. M., Brabo, E. S., Fayal, K. F., & Lima, M. O. (2003) Exposição ao mercúrio e ao arsênio em estados da Amazônia: síntese dos estudos do Instituto Evandro Chagas/FUNASA. Revista Brasileira de Epidemiologia 6(2), 171–185.

    Article  Google Scholar 

  29. Smedley, P. L., & Kinniburgh, D. G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry 17, 517–568.

    Article  Google Scholar 

  30. Takamori, A. Y., Figueiredo, B. R. (2002). Monitoramento da qualidade de água do rio Ribeira de Iguape para arsênio e metais pesados. Proocedings of the 41th Brazxilian Geological Congress, João Pessoa Paraíba, p. 255.

  31. Toujague, R. D. R. (1999). Arsênio e metais associados na região aurífera do Piririca, Vale do Ribeira, São Paulo, Brasil. MSc thesis, University of Campinas – UNICAMP.

Download references

Acknowledgements

The authors wish to express their gratitude to all colleagues and students that we dealt with during the last years for their major contribution to medical geology studies in Brazil. The anonymous review work of two SEGH referees was deeply appreciated. Research funds were provided by FAPESP (Grant 2002/0271-0) and CNPq (The Brazilian National Research Council).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bernardino Ribeiro de Figueiredo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Figueiredo, B.R., Borba, R.P. & Angélica, R.S. Arsenic occurrence in Brazil and human exposure. Environ Geochem Health 29, 109–118 (2007). https://doi.org/10.1007/s10653-006-9074-9

Download citation

Keywords

  • Arsenic
  • Brazil
  • Environment
  • Geochemistry
  • Human health