Skip to main content
Log in

Turbulent cascading in Buoyant plumes

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

This study presents discoveries on the spectral trends of energy cascading in turbulent buoyant plumes. A high-resolution large eddy simulation was used to simulate thermal and buoyant gas plumes. Turbulent plumes have positive helicity throughout the spatial development process. The helicity and turbulent kinetic energy spectra reveal consistent trends and demonstrate a deviation from the classical Kolmogorov’s inertial spectra at high wave numbers. Additional insight into turbulence physics has been confirmed in this study: the forward cascading of energy exists only at higher wavenumbers, whereas the flux of energy and helicity flows from smaller to large-scale structures at the lower wavenumbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data which support this investigation are available from the corresponding author on reasonable request.

References

  1. Morton BR (1959) Forced plumes. J Fluid Mech 5(1):151–163

    Article  Google Scholar 

  2. Morton BR (1957) Buoyant plumes in a moist atmosphere. J Fluid Mech 2(2):127–144

    Article  Google Scholar 

  3. Woods AW (2010) Turbulent plumes in nature. Annu Rev Fluid Mech 42(1):391–412

    Article  Google Scholar 

  4. Baines PG (2001) Mixing in flows down gentle slopes into stratified environments. J Fluid Mech 443:237–270

    Article  Google Scholar 

  5. Özgökmen TM, Johns WE, Peters H, Matt S (2003) Turbulent mixing in the red sea outflow plume from a high-resolution nonhydrostatic model. J Phys Oceanogr 33(8):1846–1869

    Article  Google Scholar 

  6. Ernst GGJ, Sparks RSJ, Carey SN, Bursik MI (1996) Sedimentation from turbulent jets and plumes. J Geophys Res Solid Earth 101(B3):5575–5589

    Article  Google Scholar 

  7. Carazzo G, Kaminski E, Tait S (2008) On the rise of turbulent plumes: quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive volcanism. J Geophys Res Solid Earth 113:B9

    Article  Google Scholar 

  8. Skyllingstad ED, Denbo DW (2001) Turbulence beneath sea ice and leads: a coupled sea ice/large-eddy simulation study. J Geophys Res Oceans 106(C2):2477–2497

    Article  Google Scholar 

  9. Widell K, Fer I, Haugan PM (2006) Salt release from warming sea ice. Geophys Res Lett. https://doi.org/10.1029/2006GL026262

    Article  Google Scholar 

  10. Briggs G (1967) Chimney plumes in neutral and stable surroundingsshwartz and tulin, atmospheric environment 6, 19–35 (1971). Atmos Environ 6(7):507–510

    Article  Google Scholar 

  11. Bhaganagar K, Bhimireddy SR (2017) Assessment of the plume dispersion due to chemical attack on April 4, 2017, in Syria. Nat Hazards 88(3):1893–1901

    Article  Google Scholar 

  12. Chen CH, Bhaganagar K (2021) New findings in vorticity dynamics of turbulent buoyant plumes. Phys Fluids 33(11):115104

    Article  Google Scholar 

  13. WangFS ZGSM (2022) Plume structures in turbulent natural convection between two vertical walls. Chin Sci Bull 47:955

    Google Scholar 

  14. Kraichnan RH (1967) Inertial ranges in two-dimensional turbulence. Phys Fluids 10(7):1417–1423

    Article  Google Scholar 

  15. Biferale L, Musacchio S, Toschi F (2012) Inverse energy cascade in three-dimensional isotropic turbulence. Phys Rev Lett 108:164501

    Article  Google Scholar 

  16. Alexakis A, Biferale L (2018) Cascades and transitions in turbulent flows. Phys Rep 767–769:1–101

    Article  Google Scholar 

  17. Yakhot V (1999) Two-dimensional turbulence in the inverse cascade range. Phys Rev E 60:5544–5551

    Article  Google Scholar 

  18. Pearson BC, Pearson JL, Fox-Kemper B (2021) Advective structure functions in anisotropic two-dimensional turbulence. J Fluid Mech 916:A49

    Article  Google Scholar 

  19. Yakhot V, Pelz R (1987) Large-scale structure generation by anisotropic small-scale flows. Phys Fluids 30(5):1272–1277

    Article  Google Scholar 

  20. Xia H, Byrne D, Falkovich G, Shats M (2011) Upscale energy transfer in thick turbulent fluid layers. Nat Phys 7:321–324

    Article  Google Scholar 

  21. Lilly DK (1983) Stratified turbulence and the mesoscale variability of the atmosphere. J Atmos Sci 40(3):749–761

    Article  Google Scholar 

  22. Bartello P (1995) Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J Atmos Sci 52(24):4410–4428

    Article  Google Scholar 

  23. Smith LM, Waleffe F (1999) Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys Fluids 11(6):1608–1622

    Article  Google Scholar 

  24. Christensson M, Hindmarsh M, Brandenburg A (2001) Inverse cascade in decaying three-dimensional magnetohydrodynamic turbulence. Phys Rev E 64:056405

    Article  Google Scholar 

  25. Byrne D, Zhang JA (2013) Height-dependent transition from 3-d to 2-d turbulence in the hurricane boundary layer. Geophys Res Lett 40(7):1439–1442

    Article  Google Scholar 

  26. Tang J et al (2015) Horizontal transition of turbulent cascade in the near-surface layer of tropical cyclones. J Atmos Sci 72(12):4915–4925

    Article  Google Scholar 

  27. Callies J, Ferrari R, Bühler O (2014) Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum. Proc Natl Acad Sci U S A 111(48):17033–17038

    Article  Google Scholar 

  28. Frishman A, Laurie J, Falkovich G (2017) Jets or vortices–what flows are generated by an inverse turbulent cascade? Phys Rev Fluids 2:032602

    Article  Google Scholar 

  29. Plunian F, Teimurazov A, Stepanov R, Verma MK (2020) Inverse cascade of energy in helical turbulence. J Fluid Mech 895:A13

    Article  Google Scholar 

  30. Chen CH, Bhaganagar K (2023) Energetics of buoyancy generated turbulent flows with active scalar: pure buoyant plume. J Fluid Mech 954:A23

    Article  Google Scholar 

  31. Bhaganagar K, Bhimireddy SR (2020) Numerical investigation of starting turbulent buoyant plumes released in neutral atmosphere. J Fluid Mech 900:A32

    Article  Google Scholar 

  32. Bhimireddy SR, Bhaganagar K (2021) Implementing a new formulation in WRF-LES for buoyant plume simulations: bplume-wrf-les model. Mon Weather Rev 149:2299–2319

    Google Scholar 

  33. Bhamidipati N, Woods AW (2017) On the dynamics of starting plumes. J Fluid Mech 833:R2. https://doi.org/10.1017/jfm.2017.762

    Article  Google Scholar 

  34. Ai J, Law AW-K, Yu SCM (2006) On boussinesq and non-boussinesq starting forced plumes. J Fluid Mech 558:357–386

    Article  Google Scholar 

  35. Maqui AF (2016) Turbulence generation using localized sources of energy: direct numerical simulations and the effects of thermal non-equilibrium. Ph.D. thesis, Texas A &M University

  36. Maqui AF, Donzis DA (2016) Turbulence generation through intense kinetic energy sources. Phys Fluids 28(6):065106

    Article  Google Scholar 

  37. Okui H, Sato K, Watanabe S (2022) Contribution of gravity waves to universal vertical wavenumber (\(\sim \text{m}^{-3}\)) spectra revealed by a gravity-wave- permitting general circulation model. J Geophys Res Atmos 127:e2021JD036222

    Article  Google Scholar 

  38. Sato K, Watanade S, Kawatani Y, Tomikawa Y, Miyazaki K, Takahashi M (2009) On the origins of mesospheric gravity waves. Geophys Res Lett. https://doi.org/10.1029/2009GL039908

    Article  Google Scholar 

  39. Kolmogorov AN, Levin V, Hunt JCR, Phillips OM, Williams D (1991) Dissipation of energy in the locally isotropic turbulence. Proc R Soc Lond A 434(1890):15–17

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Texas Advanced Computing Center (TACC) for computational resources and NASA for financial support. The authors acknowledge the graduate students in the Laboratory of Turbulence and Sensing at the University of Texas, San Antonio who have helped with the generation of the LES data and for developing python tool for post-processing the LES data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Bhaganagar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C.H., Bhaganagar, K. Turbulent cascading in Buoyant plumes. Environ Fluid Mech (2024). https://doi.org/10.1007/s10652-023-09963-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10652-023-09963-9

Keywords

Navigation