Skip to main content

Advertisement

Log in

Physical mechanisms of internal seiche attenuation for non-ideal stratification and basin topography

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The dynamics of vertical mixing and the occurrence of basin-scale internal waves (internal seiches) in lakes and reservoirs are often classified and described based on the force balance of wind shear and horizontal pressure gradients resulting from wind-generated currents (the Wedderburn number). The classification schemes consider specific time scales that are derived based on a simplified vertical density distribution, a rectangular basin shape, and a constant water depth. Using field measurements and numerical simulations with a validated hydrodynamic model, we analyzed the transfer of energy from wind to the internal seiche field in a small reservoir. Our results demonstrate that the basin shape has a strong influence on the energy dissipation and on the transfer of energy to propagating high-frequency internal waves, thereby attenuating the generation of basin-scale internal seiches. Most of the energy loss of the internal seiche occurs at the sloping boundary, where the internal seiche is susceptible to shoaling and breaking. These findings suggest that the Wedderburn number can be used to predict the occurrence of internal seiche activity in continuously stratified systems. As the Wedderburn number and derived mixing classifications are widely applied also for the interpretation of observed ecological and biogeochemical processes, its application to basins with sloping bathymetry and complex shape should be critically scrutinized, and deviations from predicted dynamics, including the presence of hotspots of turbulent mixing, should be considered.

Key points

  • The interaction of internal seiches with a sloping bottom is the primary mechanism in inhibiting the generation of internal seiches by promoting strong vertical mixing near the lakeshore

  • Lake shape and its influence on the mean flow acts as a secondary mechanism to inhibit the generation of internal seiches by promoting the formation of high-frequency internal waves

  • Sloping bottom and vertically distributed density gradients promote the generation of internal seiches of higher vertical modes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Appt J, Imberger J, Kobus H (2004) Basin-scale motion in stratified upper lake constance. Limnol Oceanogr 49(4):919–933

    Article  Google Scholar 

  2. Bernhardt J, Kirillin G (2013) Seasonal pattern of rotation-affected internal seiches in a small temperate lake. Limnol Oceanogr 58(4):1344–1360. https://doi.org/10.4319/lo.2013.58.4.1344

    Article  Google Scholar 

  3. Boegman L, Ivey GN, Imberger J (2005) The degeneration of internal waves in lakes with sloping topography. Limnol Oceanogr 50(5):1620–1637. https://doi.org/10.4319/lo.2005.50.5.1620

    Article  Google Scholar 

  4. Boehrer B (2000) Modal response of a deep stratified lake: western Lake Constance. J Geophys Res Oceans 105(C12):28837–28845. https://doi.org/10.1029/2000JC900125

    Article  Google Scholar 

  5. Boehrer B, Ilmberger J, Münnich KO (2000) Vertical structure of currents in western Lake Constance. J Geophys Res Oceans 105(C12):28823–28835. https://doi.org/10.1029/2000JC900139

    Article  Google Scholar 

  6. Bouffard D, Boegman L (2012) Basin-scale internal waves. In Encyclopedia of lakes and reservoirs (pp. 102–107). Springer

  7. Brenner SD, Laval BE (2018) Seiche modes in multi-armed lakes. Limnol Oceanogr 63(6):2717–2726. https://doi.org/10.1002/lno.11001

    Article  Google Scholar 

  8. Coman MA, Wells MG (2012) Temperature variability in the nearshore benthic boundary layer of Lake Opeongo is due to wind-driven upwelling events. Can J Fish Aquat Sci 69(2):282–296. https://doi.org/10.1139/f2011-167

    Article  Google Scholar 

  9. Cossu R, Wells MG (2013) The interaction of large amplitude internal seiches with a shallow sloping lakebed: observations of benthic turbulence in Lake Simcoe Ontario. Canada. PloS One 8(3):e57444. https://doi.org/10.1371/journal.pone.0057444

    Article  Google Scholar 

  10. de Carvalho Bueno R, Bleninger T, Lorke A (2020) Internal wave analyzer for thermally stratified lakes. Environ Model Softw. https://doi.org/10.1016/j.envsoft.2020.104950

    Article  Google Scholar 

  11. de Carvalho Bueno R, Bleninger T, Yao H, Rusak JA (2020) An empirical parametrization of internal seiche amplitude including secondary effects. Environ Fluid Mech. https://doi.org/10.1007/s10652-020-09767-1

    Article  Google Scholar 

  12. Delft Hydraulics WL (2003) User manual of Delft3D-FLOW—simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments.

  13. Dissanayake P, Hofmann H, Peeters F (2019) Comparison of results from two 3D hydrodynamic models with field data: internal seiches and horizontal currents. Inland Waters 9(2):239–260. https://doi.org/10.1080/20442041.2019.1580079

    Article  Google Scholar 

  14. Etemad-Shahidi A, Imberger J (2006) Diapycnal mixing in the thermocline of lakes: estimations by different methods. Environ Fluid Mech 6(3):227–240. https://doi.org/10.1007/s10652-005-4480-6

    Article  Google Scholar 

  15. Flood B, Wells M, Midwood JD, Brooks J, Kuai Y, Li J (2021) Intense variability of dissolved oxygen and temperature in the internal swash zone of Hamilton Harbour. Inland Waters, Lake Ontario. https://doi.org/10.1080/20442041.2020.1843930

    Book  Google Scholar 

  16. Forel F-A (1892) Le Léman : monographie limnologique. F. Rouge, Lausanne. https://doi.org/10.5962/bhl.title.124608

    Book  Google Scholar 

  17. Forsythe KW, Marvin CH (2005) Analyzing the spatial distribution of sediment contamination in the lower Great Lakes. Water Qual Res J 40(4):389–401. https://doi.org/10.2166/wqrj.2005.043

    Article  Google Scholar 

  18. Fricker PD, Nepf HM (2000) Bathymetry, stratification, and internal seiche structure. J Geophys Res Oceans 105(C6):14237–14251. https://doi.org/10.1029/2000JC900060

    Article  Google Scholar 

  19. Frindte K, Eckert W, Attermeyer K, Grossart H-P (2013) Internal wave-induced redox shifts affect biogeochemistry and microbial activity in sediments: a simulation experiment. Biogeochemistry 113(1–3):423–434. https://doi.org/10.1007/s10533-012-9769-1

    Article  Google Scholar 

  20. Gómez-Giraldo A, Imberger J, Antenucci JP (2006) Spatial structure of the dominant basin-scale internal waves in Lake Kinneret. Limnol Oceanogr 51(1):229–246. https://doi.org/10.4319/lo.2006.51.1.0229

    Article  Google Scholar 

  21. Goudsmit GH, Burchard H, Peeters F, Wüest A (2002) Application of k-ε turbulence models to enclosed basins: the role of internal seiches. J Geophys Res C Oceans 107(12):23–31. https://doi.org/10.1029/2001jc000954

    Article  Google Scholar 

  22. Goudsmit G-H, Burchard H, Peeters F, Wüest A (2002) Application of k-$ε$ turbulence models to enclosed basins: The role of internal seiches. J Geophys Res Oceans 107(C12):21–23. https://doi.org/10.1029/2001JC000954

    Article  Google Scholar 

  23. Guseva S, Casper P, Sachs T, Spank U, Lorke A (2021) Energy flux paths in lakes and reservoirs. Water 13(22):3270. https://doi.org/10.3390/w13223270

    Article  Google Scholar 

  24. Heaps NS, Ramsbotton AE (1966) Wind effects on the water in a narrow two-layered lake. Part I. Theoretical analysis. Part II. Analysis of observations from Windermere. Part III. Application of the theory to Windermere. Philos Trans R Soc London 259(1102):391–430. https://doi.org/10.1098/rsta.1966.0021

    Article  Google Scholar 

  25. Henderson SM, Deemer BR (2012) Vertical propagation of lakewide internal waves: propagation of lakewide internal waves. Geophys Res Lett. https://doi.org/10.1029/2011GL050534

    Article  Google Scholar 

  26. Hingsamer P, Peeters F, Hofmann H (2014) The consequences of internal waves for phytoplankton focusing on the distribution and production of Planktothrix rubescens. PLoS ONE 9(8):e104359. https://doi.org/10.1371/journal.pone.0104359

    Article  Google Scholar 

  27. Hodges BR, Imberger J, Saggio A, Winters KB (2000) Modeling basin-scale internal waves in a stratified lake. Limnol Oceanogr 45(7):1603–1620. https://doi.org/10.4319/lo.2000.45.7.1603

    Article  Google Scholar 

  28. Horn DA, Imberger J, Ivey GN (2001) The degeneration of large-scale interfacial gravity waves in lakes. J Fluid Mech 434:181–207. https://doi.org/10.1017/S0022112001003536

    Article  Google Scholar 

  29. Imam YE, Laval B, Pieters R, Lawrence G (2020) The baroclinic response to wind in a multiarm multibasin reservoir. Limnol Oceanogr 65(3):582–600. https://doi.org/10.1002/lno.11328

    Article  Google Scholar 

  30. Imberger J (2013) Environmental fluid dynamics: flow processes, scaling, equations of motion, and solutions to environmental flows. Elsevier

    Google Scholar 

  31. Imberger J, Patterson JC (1989) Physical limnology. Advances in applied mechanics. Elsevier, pp 303–475. https://doi.org/10.1016/S0065-2156(08)70199-6

    Chapter  Google Scholar 

  32. Imboden DM (2003) The motion of lake waters. In: O’Sullivan PE, Reynolds CS (eds) The lakes handbook. Blackwell Science Ltd, Malden, pp 115–152. https://doi.org/10.1002/9780470999271.ch6

    Chapter  Google Scholar 

  33. Ishikawa M, Bleninger T, Lorke A (2021) Hydrodynamics and mixing mechanisms in a subtropical reservoir. Inland Waters. https://doi.org/10.1080/20442041.2021.1932391

    Article  Google Scholar 

  34. Ishikawa M, et al. (2021b). Effects of dimensionality on the performance of hydrodynamic models. In Geoscientific model development discussions (pp. 1–34). Copernicus GmbH

  35. Kranenburg W, Tiessen M, Veenstra J, de Graaff R, Uittenbogaard R, Bouffard D, Sakindi G, Umutoni A, de Walle J, Thiery W et al (2020) 3D-modelling of Lake Kivu: horizontal and vertical flow and temperature structure under spatially variable atmospheric forcing. J Great Lakes Res 46(4):947–960. https://doi.org/10.1016/j.jglr.2020.05.012

    Article  Google Scholar 

  36. Laval BE, Imberger J, Findikakis AN (2005) Dynamics of a large tropical lake: Lake Maracaibo. Aquat Sci 67(3):337–349. https://doi.org/10.1007/s00027-005-0778-1

    Article  Google Scholar 

  37. Laval B, Imberger J, Hodges BR, Stocker R (2003) Modeling circulation in lakes: Spatial and temporal variations. Limnol Oceanogr 48(3):983–994. https://doi.org/10.4319/lo.2003.48.3.0983

    Article  Google Scholar 

  38. LaZerte BD (1980) 1: Higher order vertical modes. Limnol Oceanogr 25(5):846–854. https://doi.org/10.4319/lo.1980.25.5.0846

    Article  Google Scholar 

  39. León LF, Imberger J, Smith REH, Hecky RE, Lam DCL, Schertzer WM (2005) Modeling as a tool for nutrient management in Lake Erie: a hydrodynamics study. J Great Lakes Res 31:309–318. https://doi.org/10.1016/S0380-1330(05)70323-3

    Article  Google Scholar 

  40. Lin S, Boegman L, Rao YR (2021) Characterizing spatial and temporal distributions of turbulent mixing and dissipation in Lake Erie. J Great Lakes Res 47(1):168–179. https://doi.org/10.1016/j.jglr.2020.11.014

    Article  Google Scholar 

  41. Lorke A (2007) Boundary mixing in the thermocline of a large lake. J Geophys Res. https://doi.org/10.1029/2006JC004008

    Article  Google Scholar 

  42. Lorke A, Umlauf L, Mohrholz V (2008) Stratification and mixing on sloping boundaries. Geophys Res Lett. https://doi.org/10.1029/2008GL034607

    Article  Google Scholar 

  43. Maas LRM, Benielli D, Sommeria J, Lam F-PA (1997) Observation of an internal wave attractor in a confined, stably stratified fluid. Nature 388(6642):557–561. https://doi.org/10.1038/41509

    Article  Google Scholar 

  44. MacIntyre S, Flynn KM, Jellison R, Romero JR (1999) Boundary mixing and nutrient fluxes in Mono Lake. California Limnol Oceanogr 44(3):512–529. https://doi.org/10.4319/lo.1999.44.3.0512

    Article  Google Scholar 

  45. Makarewicz JC, Lewis TW, Pennuto CM, Atkinson JF, Edwards WJ, Boyer GL, Howell ET, Thomas G (2012) Physical and chemical characteristics of the nearshore zone of Lake Ontario. J Great Lakes Res 38:21–31

    Article  Google Scholar 

  46. Mortimer CH (1952) Water movements in lakes during summer stratification; evidence from the distribution of temperature in Windermere. Philos Trans R Soc London B Biol Sci 236(635):355–398. https://doi.org/10.1098/rstb.1952.0005

    Article  Google Scholar 

  47. Mortimer CH (1953) The resonant response of stratified lakes to wind. Schweiz Z Hydrol 15(1):94–151. https://doi.org/10.1007/BF02486219

    Article  Google Scholar 

  48. Mortimer CH, Horn W (1982) Internal wave dynamics and their implications for plankton biology in the Lake of Zurich. Vier Natur Gesell Zurich 127:299–318

    Google Scholar 

  49. Münnich M (1996) The influence of bottom topography on internal seiches in stratified media. Dyn Atmos Oceans 23(1–4):257–266. https://doi.org/10.1016/0377-0265(95)00439-4

    Article  Google Scholar 

  50. Münnich M, Wüest A, Imboden DM (1992) Observations of the second vertical mode of the internal seiche in an alpine lake. Limnol Oceanogr 37(8):1705–1719. https://doi.org/10.4319/lo.1992.37.8.1705

    Article  Google Scholar 

  51. Okely P, Imberger J (2007) Horizontal transport induced by upwelling in a canyon-shaped reservoir. Hydrobiologia 586(1):343–355. https://doi.org/10.1007/s10750-007-0706-6

    Article  Google Scholar 

  52. Pillet G, Maas LRM, Dauxois T (2019) Internal wave attractors in 3D geometries : a dynamical systems approach. Eur J Mech B Fluids 77:1–16. https://doi.org/10.1016/J.EUROMECHFLU.2019.01.008

    Article  Google Scholar 

  53. Polli, B. A., & Bleninger, T. (2019). Comparison of 1D and 3D reservoir heat transport models and temperature effects on mass transport. RBRH, 24. https://doi.org/10.1590/2318-0331.241920190023

  54. Preusse M, Peeters F, Lorke A (2010) Internal waves and the generation of turbulence in the thermocline of a large lake. Limnol Oceanogr 55(6):2353–2365. https://doi.org/10.4319/lo.2010.55.6.2353

    Article  Google Scholar 

  55. Rinke K, Hübner I, Petzoldt T, Rolinski S et al (2007) How internal waves influence the vertical distribution of zooplankton. Freshw Biol 52(1):137–144. https://doi.org/10.1111/j.1365-2427.2006.01687.x

    Article  Google Scholar 

  56. Roberts DC, Egan GC, Forrest AL, Largier JL, Bombardelli FA, Laval BE, Monismith SG, Schladow G (2021) The setup and relaxation of spring upwelling in a deep, rotationally influenced lake. Limnol Oceanogr 66(4):1168–1189. https://doi.org/10.1002/lno.11673

    Article  Google Scholar 

  57. Roget E, Salvadé G, Zamboni F (1997) Internal seiche climatology in a small lake where transversal and second vertical modes are usually observed. Limnol Oceanogr 42(4):663–673. https://doi.org/10.4319/lo.1997.42.4.0663

    Article  Google Scholar 

  58. Serra T, Vidal J, Casamitjana X, Soler M, Colomer J (2007) The role of surface vertical mixing in phytoplankton distribution in a stratified reservoir. Limnol Oceanogr 52(2):620–634. https://doi.org/10.4319/lo.2007.52.2.0620

    Article  Google Scholar 

  59. Shimizu K, Imberger J (2008) Energetics and damping of basin-scale internal waves in a strongly stratified lake. Limnol Oceanogr 53(4):1574–1588

    Article  Google Scholar 

  60. Shintani T, de la Fuente A, de la Fuente A, Niño Y, Imberger J (2010) Generalizations of the wedderburn number: parameterizing upwelling in stratified lakes. Limnol Oceanogr 55(3):1377–1389. https://doi.org/10.4319/lo.2010.55.3.1377

    Article  Google Scholar 

  61. Shintani T, De La Fuente A, Niño Y, Imberger J (2010) Generalizations of the wedderburn number: parameterizing upwelling in stratified lakes. Limnol Oceanogr 55(3):1377–1389. https://doi.org/10.4319/lo.2010.55.3.1377

    Article  Google Scholar 

  62. Simon A (1997) Turbulent mixing in the upper layer of lakes. Erdgenössische Technische Höchschule, Zürich

    Google Scholar 

  63. Simpson JH, Wiles PJ, Lincoln BJ (2011) Internal seiche modes and bottom boundary-layer dissipation in a temperate lake from acoustic measurements. Limnol Oceanogr 56(5):1893–1906. https://doi.org/10.4319/lo.2011.56.5.1893

    Article  Google Scholar 

  64. Spigel RH, Imberger J (1980) The classification of mixed-layer dynamics of lakes of small to medium size. J Phys Oceanogr 10(7):1104–1121. https://doi.org/10.1175/1520-0485(1980)010%3C1104:TCOMLD%3E2.0.CO;2

    Article  Google Scholar 

  65. Stevens C, Imberger J (1996) The initial response of a stratified lake to a surface shear stress. J Fluid Mech 312:39–66. https://doi.org/10.1017/S0022112096001917

    Article  Google Scholar 

  66. Stevens CL, Lawrence GA (1997) Estimation of wind-forced internal seiche amplitudes in lakes and reservoirs, with data from British Columbia. Canada Aquatic Sciences 59(2):115–134. https://doi.org/10.1007/BF02523176

    Article  Google Scholar 

  67. Thompson R (1980). Response of a numerical model of a stratified lake to wind stress. Proc. Second Int. Symp. Stratified Flows, IAHR, 1980.

  68. Valbuena SA, Bombardelli FA, Cortés A, Largier JL, Roberts DC, Forrest AL, Geoffrey Schladow S (2022) 3D flow structures during upwelling events in lakes of moderate size. Water Res Res. https://doi.org/10.1029/2021WR030666

    Article  Google Scholar 

  69. Vidal J, Casamitjana X (2008) Forced resonant oscillations as a response to periodic winds in a stratified reservoir. J Hydraul Eng 134(4):416–425. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:4(416)

    Article  Google Scholar 

  70. Vidal J, Casamitjana X, Colomer J, Serra T (2005) The internal wave field in Sau reservoir: observation and modeling of a third vertical mode. Limnol Oceanogr 50(4):1326–1333. https://doi.org/10.4319/lo.2005.50.4.1326

    Article  Google Scholar 

  71. Wadzuk BM, Hodges BR (2009) Hydrostatic versus nonhydrostatic Euler-equation modeling of nonlinear internal waves. J Eng Mech 135(10):1069–1080. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:10(1069)

    Article  Google Scholar 

  72. Watson ER (1903) Internal oscillation in the waters of Loch Ness. Nature 69:174. https://doi.org/10.1038/069174a0

    Article  Google Scholar 

  73. Watson ER (1904) Movements of the waters of Loch Ness, as indicated by temperature observations. Geogr J 24(4):430–437

    Article  Google Scholar 

  74. Welch P (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73. https://doi.org/10.1109/TAU.1967.1161901

    Article  Google Scholar 

  75. Wüest A, Lorke A (2009) Small-scale turbulence and mixing: energy fluxes in stratified lakes. Encyclopedia of Inland Waters. Elsevier, pp 628–635. https://doi.org/10.1016/B978-012370626-3.00084-3

    Chapter  Google Scholar 

  76. Wüest A, Piepke G, Van Senden DC (2000) Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters. Limnol Oceanogr 45(6):1388–1400. https://doi.org/10.4319/lo.2000.45.6.1388

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Coordenação de Aperfeiçoamento de Pessoas de Nivel Superior—Brasil (CAPES)—Finance Code 001, and by the German Federal Ministry of Education and Research (BMBF) as part of the MuDak-WRM project (grant numbers 02WGR1431 B and 02WGR1431 F). RCB thanks CAPES for the scholarships. TB acknowledges the productivity stipend from the National Council for Scientific and Technological Development – CNPq, Grant no. 312211/2020-1, call 09/2020. All input data to support the findings presented here are available at https://github.com/buenorc/wepaper.git (https://doi.org/10.5281/zenodo.5708040).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: study conception and design: RCB, TB, and AL; three-dimensional numerical simulations: RCB and TB; Field measurements: TB, and AL; Analysis and interpretation of results: RCB, TB, BB and AL; draft manuscript preparation: RCB, TB, BB and AL. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rafael de Carvalho Bueno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1952 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Bueno, R., Bleninger, T., Boehrer, B. et al. Physical mechanisms of internal seiche attenuation for non-ideal stratification and basin topography. Environ Fluid Mech 23, 689–710 (2023). https://doi.org/10.1007/s10652-023-09928-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-023-09928-y

Keywords

Navigation