Skip to main content
Log in

KmT, detailing layered mixing governed by internal wave breaking

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The kilometer-long sub-surface mooring ‘KmT’, densely instrumented with 760 high-resolution temperature ‘T-’sensors, demonstrates details of turbulent mixing in the vicinity of a large seamount. Away from the internal wave breaking zone above the seafloor, turbulence is observed in two cases. It is found in thin layers along isopycnals providing non-smooth dispersal, as well as induced by internal wave breaking following strongly non-linear interaction as in a hydraulic jump more than 500 m above the local seafloor. Turbulence levels for these cases are relatively low and high, respectively, but always one to two orders of magnitude larger than in the ocean interior far from topography. Both cases imply the importance of underwater topography like a seamount for deep-sea turbulence. The seamount functions as a lens focusing internal waves into a turbulence-generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Alford MH, Pinkel R (2000) Overturning in the thermocline: the context of ocean mixing. J Phys Oceanogr 30:805–832

    Article  Google Scholar 

  2. Armi L (1978) Some evidence for boundary mixing in the deep ocean. J Geophys Res 83:1971–1979

    Article  Google Scholar 

  3. Armi L (1979) Effects of variations in eddy diffusivity on property distributions in the oceans. J Mar Res 37:515–530

    Google Scholar 

  4. Bolgiano R (1959) Turbulent spectra in a stably stratified atmosphere. J Geophys Res 64:2226–2229

    Article  Google Scholar 

  5. Cacchione DA, Drake DE (1986) Nepheloid layers and internal waves over continental shelves and slopes. Geo-Mar Lett 16:147–152

    Article  Google Scholar 

  6. Dale AC, Levine MD, Barth JA, Austin JA (2006) A dye tracer reveals cross-shelf dispersion and interleaving on the Oregon shelf. Geophys Res Lett 33:L03604. https://doi.org/10.1029/2005GL024959

    Article  Google Scholar 

  7. Dillon TM (1982) Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J Geophys Res 87:9601–9613

    Article  Google Scholar 

  8. Gregg MC, D’Asaro EA, Riley JJ, Kunze E (2018) Mixing efficiency in the ocean. Ann Rev Mar Sci 10:443–473

    Article  Google Scholar 

  9. Hebert D, Oakey N, Ruddick B (1990) Evolution of a mediterranean salt lens: scalar properties. J Phys Oceanogr 20:1468–1483

    Article  Google Scholar 

  10. Holtermann PL, Prien R, Naumann M, Mohrholz V, Umlauf L (2017) Deepwater dynamics and mixing processes during a major inflow event in the central Baltic Sea. J Geophys Res 122:6648–6667. https://doi.org/10.1002/2017JC013050

    Article  Google Scholar 

  11. Hosegood P, van Haren H (2004) Near-bed solibores over the continental slope in the Faeroe-Shetland Channel. Deep-Sea Res II 51:2943–2971

    Article  Google Scholar 

  12. Inall ME (2009) Internal wave induced dispersion and mixing on a sloping boundary. Geophys Res Lett 36:L05604. https://doi.org/10.1029/2008GL036849

    Article  Google Scholar 

  13. IOC, SCOR, IAPSO (2010) The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO

  14. Klymak JM, Legg S, Alford MH, Buijsman M, Pinkel R, Nash JD (2012) The direct breaking of internal waves at steep topography. Oceanography 25:150–159

    Article  Google Scholar 

  15. Lazier JRN (1973) Temporal changes in some fresh water temperature structures. J Phys Oceanogr 3:226–229

    Article  Google Scholar 

  16. Legg S, Klymak J (2008) Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J Phys Oceanogr 38:1949–1964

    Article  Google Scholar 

  17. May BD, Kelley DE (2001) Growth and steady state stages of thermohaline intrusions in the Arctic Ocean. J Geophys Res 106:16783–16794

    Article  Google Scholar 

  18. Marmorino GO, Brown WK, Morris WD (1987) Two-dimensional temperature structure in the C-SALT thermohaline staircase. Deep-Sea Res 34:1667–1676

    Article  Google Scholar 

  19. Mayer FT, Fringer OB (2017) An unambiguous definition of the Froude number for lee waves in the deep ocean. J Fluid Mech 831:R3

    Article  Google Scholar 

  20. Munk WH (1966) Abyssal recipes. Deep-Sea Res 13:707–730

    Google Scholar 

  21. Munk W, Wunsch C (1998) Abyssal recipes II: energy of tidal and wind mixing. Deep-Sea Res I 45:1977–2010

    Article  Google Scholar 

  22. Nash JD, Alford MH, Kunze E, Martini K, Kelly S (2007) Hotspots of deep ocean mixing on the Oregon. Geophys Res Lett 34:L01605. https://doi.org/10.1029/2006GL028170

    Article  Google Scholar 

  23. Nikurashin M, Ferrari R, Grisouard N, Polzin K (2014) The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean. J Phys Oceanogr 44:2938–2950

    Article  Google Scholar 

  24. Oakey NS (1982) Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J Phys Oceanogr 12:256–271

    Article  Google Scholar 

  25. Osborn TR (1980) Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10:83–89

    Article  Google Scholar 

  26. Pawar SS, Arakeri JH (2016) Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence. Phys Fluids 28:065103

    Article  Google Scholar 

  27. Phillips OM (1971) On spectra measured in an undulating layered medium. J Phys Oceanogr 1:1–6

    Article  Google Scholar 

  28. Pingree RD, New AL (1991) Abyssal penetration and bottom reflection of internal tide energy in the Bay of Biscay. J Phys Oceanogr 21:28–39

    Article  Google Scholar 

  29. Reid RO (1971) A special case of Phillips’ general theory of sampling statistics for a layered medium. J Phys Oceanogr 1:61–62

    Google Scholar 

  30. Ruddick B (1984) The life of a thermohaline intrusion. J Mar Res 42:831–852

    Article  Google Scholar 

  31. Schmitt RW (1987) The Caribbean sheets and layers transects (C-SALT) program. Eos 68:57–60

    Article  Google Scholar 

  32. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962

    Article  Google Scholar 

  33. Tennekes H, Lumley JL (1972) A first course in turbulence. The MIT Press

    Book  Google Scholar 

  34. Thorpe SA (1977) Turbulence and mixing in a Scottish loch. Phil Trans Roy Soc Lond A 286:125–181

    Article  Google Scholar 

  35. Thorpe SA, White M (1988) A deep intermediate nepheloid layer. Deep-Sea Res 35:1665–1671

    Article  Google Scholar 

  36. Turner JS (1979) Buoyancy effects in fluids. Cambridge University Press, Cambridge

    Google Scholar 

  37. van Haren H (2018) Philosophy and application of high-resolution temperature sensors for stratified waters. Sensors 18:3184. https://doi.org/10.3390/s18103184

    Article  Google Scholar 

  38. van Haren H (2019) Open-ocean interior moored sensor turbulence estimates, below a Meddy. Deep-Sea Res I 144:75–84

    Article  Google Scholar 

  39. van Haren H, Gostiaux L (2012) Detailed internal wave mixing observed above a deep-ocean slope. J Mar Res 70:173–197

    Article  Google Scholar 

  40. van Haren H, Cimatoribus AA, Gostiaux L (2015) Where large deep-ocean waves break. Geophys Res Lett 42:2351–2357. https://doi.org/10.1002/2015GL063329

    Article  Google Scholar 

  41. Winters KB (2015) Tidally driven mixing and dissipation in the stratified boundary layer above steep submarine topography. Geophys Res Lett 42:7123–7130. https://doi.org/10.1002/2015GL064676

    Article  Google Scholar 

  42. Woods JD (1968) Wave-induced shear instability in the summer thermocline. J Fluid Mech 32:791–800

    Article  Google Scholar 

Download references

Acknowledgements

I thank captain and crew of R/V Pelagia for their assistance and technicians of NIOZ-NMF for help in preparing and deploying the mooring. NIOZ-temperature sensors have been funded in part by the Netherlands Organization for the Advancement of Science (N.W.O.).

Funding

Aard- en Levenswetenschappen, Nederlandse Organisatie voor Wetenschappelijk Onderzoek.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans van Haren.

Ethics declarations

Conflict of interest

H.V.H. declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Haren, H. KmT, detailing layered mixing governed by internal wave breaking. Environ Fluid Mech 23, 603–620 (2023). https://doi.org/10.1007/s10652-023-09921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-023-09921-5

Keywords

Navigation