Skip to main content
Log in

Numerical simulation of pollutants dispersion emitted by a bent chimney

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

We propose to numerically study the dispersion of pollutants emitted from a chimney bent around an obstacle. A numerical simulation of the dispersion of pollutants emitted from a chimney has been performed using the CFD code Fluent. The influence of the ratio (R) of the jet speed to the lateral wind velocity, the distance between the chimney and the obstacle and the height of the obstacle on the dispersion of the ejected pollutants was studied. The numerical method used to solve the flow equations is a finite volume method, the mesh size adopted is non-uniform, very close to the chimney and around the obstacle. The results show essentially that the dispersion of the pollutants is more pronounced for larger R-ratios. It is also shown that the location and height of the obstacle modify the flow, the further the chimney is from the obstacle the greater the dispersion of pollutants. Also, ejection at a higher chimney height generates a larger plume which favours dilution and dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(u_{i} , u_{j}\) :

Velocity components along the i and j directions (m s1)

\(\overline{u}_{i} , \overline{u}_{j}\) :

Mean velocity along i and j directions (m s1)

\(u_{i}^{^{\prime}} , u_{j}^{^{\prime}}\) :

Fluctuating velocity components in i and j directions (m s1)

\(x_{i} , x_{j}\) :

Coordinate along i and j directions (m)

x, y:

Cartesian coordinates (m)

T:

Temperature (K)

\({\overline{\text{T}}}\) :

Mean temperature (K)

ρ:

Density (kg m3)

\(\overline{p}\) :

Mean pressure (Pa)

ν:

Kinematic viscosity (m2 s1)

\(S_{i} , S_{k} , S_{\varepsilon }\) :

Source term

µ:

Dynamic viscosity (kg m1 s1)

\({\text{P}}_{{\text{r}}}\) :

Prandtl number

\(\mu_{t}\) :

Turbulent viscosity (kg m1 s1)

\(\sigma_{t}\) :

Turbulent Prandtl number

k:

Kinetic energy of turbulence (m2 s2)

\(\sigma_{k} , \sigma_{\varepsilon }\) :

Constant of the model of turbulence

ε:

Dissipation rate of the turbulent kinetic energy (m2 s3)

\(C_{1\varepsilon } , C_{2\varepsilon } , C_{\mu }\) :

Constants of the model

G:

Production term of k (kg m1 s3)

R:

Velocity ratio uchimney/uwind

References

  1. Hwang JY, Yang KS (2004) Numerical study of vortical structures around a wall-mounted cubic obstacle in channel flow. Phys Fluids 16:2382–2395. https://doi.org/10.1063/1.1736675

    Article  Google Scholar 

  2. Yakhot A, Liu H, Nikitin N (2006) Turbulent flow around a wall-mounted cube: a direct numerical simulation. Int J Heat Fluid Flow 27:994–1009. https://doi.org/10.1016/j.ijheatfluidflow

    Article  Google Scholar 

  3. Huptas M, Elsner W (2008) Steady and unsteady simulation of flow structure of two surface-mounted square obstacles. TASK Q 12:197–207

    Google Scholar 

  4. Nedjari H, Saighi M (2009) Simulation numérique de l ’ écoulement du vent autour d ’ un bâtiment cubique. In: ICCM3E, Novembre

  5. Cheng M, Whyte D, Lou J (2007) Numerical simulation of flow around a square cylinder in uniform-shear flow. J Fluids Struct 23:207–226. https://doi.org/10.1016/j.jfluidstructs.2

    Article  Google Scholar 

  6. Huber AH (1989) The influence of building width and orientation on plume dispersion in the wake of building. Atmos Environ 23:2109–2116. https://doi.org/10.1016/0004-6981(89)90172-8

    Article  Google Scholar 

  7. Gera B, Pavan K, Singh R (2010) CFD analysis of 2D unsteady flow around a square cylinder. Int J Appl Eng Res DIndigul 1:602–610

    Google Scholar 

  8. Adair D (1990) Numerical calculations of aerial dispersion from elevated sources. Appl Math Model 14:459–467. https://doi.org/10.1016/0307-904X(90)9017

    Article  Google Scholar 

  9. Becker S, Lienhart H, Durst F (2002) Flow around three-dimensional obstacles in boundary layers. J Wind Eng Ind Aerodyn 90:265–279. https://doi.org/10.1016/S0167-6105(01)00209-4

    Article  Google Scholar 

  10. Diaf N, Bouchaour M, Merad L, Benyoucef B (2003) Paramètres influençant la dispersion des polluants gazeux. RevEnergRen: ICPWE 2003:139–142

    Google Scholar 

  11. Mittal H, Sharma A, Gairola A (2019) Numerical simulation of pedestrian level wind conditions: effect of building shape and orientation. Environ Fluid Mech. https://doi.org/10.1007/s10652-019-09716-7

    Article  Google Scholar 

  12. Hervé G (2015) Caractérisation expérimentale de l’écoulement et de la dispersion autour d’un obstacle bidimensionnel. Thèse de l’Université de Lyon

  13. Mavroidis I, Griffiths RF, Hall DJ (2003) Field and wind tunnel investigations of plume dispersion around single surface obstacles. Atmos Environ 37:2903–2918. https://doi.org/10.1016/S1352-2310(03)00300-5

    Article  Google Scholar 

  14. Mirzai MH, Harvey JK, Jones CD (1994) Wind tunnel investigation of dispersion of pollutants due to wind flow around a small building. Atmos Environ 28:1819–1826

    Article  Google Scholar 

  15. Mahjoub N, Mhri H, El Golli S (2001) Dispersion autour d’un Bâtiment d’un Polluant Issu d’une Cheminée: 139–144.

  16. Mouzakis F, Bergeles G (1991) Polluant dispersion over a triangular ridge: a numerical study. Atmos Environ 25:371–379. https://doi.org/10.1016/0960-1686(91)9030

    Article  Google Scholar 

  17. Zhang X (2000) Turbulence measurements of an inclined rectangular jet embedded in a turbulent boundary layer. Int J Heat Fluid Flow 21:291–296

    Article  Google Scholar 

  18. Smith TT, Frankenberg M (1975) Improvement of ambient sulfur dioxide concentrations by conversion from low to high stacks. J Air Pollut Control Assoc 25:595–601

    Article  Google Scholar 

  19. Willis G, Deardorff W (1976) A laboratory model of diffusion into the convective planetary boundary layer. Quart J R Met SOC 102:421–445. https://doi.org/10.1002/qj.49710243212

    Article  Google Scholar 

  20. Wilson DJ (1971) Turbulent dispersion in atmospheric shear flow and its wind tunnel simulation, Numéro 76 de Technical note Von Karman Institute for Fluid Dynamics

  21. Vincent J (1977) Model experiments on the nature of air pollution transport near buildings. Atmos Environ 11:765–774

    Article  Google Scholar 

  22. Guo D, Zhao P (2019) Numerical and wind tunnel simulation studies of the flow field and pollutant diffusion around a building under neutral and stable atmospheric stratifications. J Appl Meteorol Climatol 58:2405–2420. https://doi.org/10.1175/JAMC-D-19-0045.1

    Article  Google Scholar 

  23. Orkomi AA, Ashrafi K, Motlagh MS (2018) New plume rise modeling in a turbulent atmosphere via hybrid RANS-LES numerical simulation. J Wind Eng Ind Aerodyn 173:132–146. https://doi.org/10.1016/j.jweia.2017.11.028

    Article  Google Scholar 

  24. Bournot Ph (2003) Experimental study of the plume emitted by a smokestack. In: Proceeding of PSFVIP

  25. Zair F, Mouqallid M, Chatri EH (2021) The effect of straight chimney temperature on pollutant dispersion. E3S Web Conf 9:6–11. https://doi.org/10.1051/e3sconf/202123400009

    Article  Google Scholar 

  26. Baouab BI, Bournot H, Mahjoub SN et al (2011) Dispersion of a bent chimney fume around a variably oriented building. Proc Inst Mech Eng Part C J Mech Eng Sci 225:843–852. https://doi.org/10.1243/09544062JMES2197

    Article  Google Scholar 

  27. Baouab BI, Mahjoub SN, Mhri H et al (2013) Dynamic and mass transfer characteristics of the flow issued from a bent chimney around buildings. Heat Mass Transf 49:337–358. https://doi.org/10.1007/s00231-012-1078-7

    Article  Google Scholar 

  28. Zair F, Mouqallid M, Chatri EH (2020) The effect of the presence of obstacles on the emission dispersion emitted by a bent chimney. FME Trans 48:882–888. https://doi.org/10.5937/fme2004882Z

    Article  Google Scholar 

  29. Zair F, Mouqallid M, Chatri EH (2021) Factors impact the dispersion of pollutants emitted from the bent chimney around the obstacles. AIP Conf Proc 2345:1–9. https://doi.org/10.1063/5.0049495

    Article  Google Scholar 

  30. Launder BE, Spaliding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    Article  Google Scholar 

  31. Baouab BI, Radhouane A, Mahjoub SN et al (2012) Assessment of a chimney jet flowing around an obstacle. Heat Transf Eng 33:885–904. https://doi.org/10.1080/01457632.2012.654451

    Article  Google Scholar 

  32. Paraschivoiu I (1998) Aérodynamique subsonique, Editions de l’école polytechnique de Montréal (Québec), Canada

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fida Zair.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zair, F., Mouqallid, M. & Chatri, E.H. Numerical simulation of pollutants dispersion emitted by a bent chimney. Environ Fluid Mech 22, 113–132 (2022). https://doi.org/10.1007/s10652-022-09833-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-022-09833-w

Keywords

Navigation