Skip to main content
Log in

Vortical structures, entrainment and mixing process in the lateral discharge of the gravity current

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Lateral gravity currents can play a critical role in the exchange of materials between terrestrial and marine ecosystems. The three-dimensional flow structure and mixing process of the gravity current, discharged from a lateral rectangular lock into an ambient fluid, are investigated by solving Unsteady Reynolds-averaged Navier-Stokes equations with the RNG k-ε turbulence model. The accuracy and consistency of the developed model are checked using the experimental data of the lock-exchange in the straight channel, lateral flow in the open channel and mass exchange in the cavity. The agreement between measured and simulated flow and concentration fields is reasonable. The lateral gravity current without the main channel discharge spreads radially out and is arrested by the other bank of the main channel. Before reaching the other bank, the lateral gravity current evolves into the acceleration, slumping, and inertial phases. The gravity current remains in the slumping phase at a straight channel without the tributary. The mixing layer is more diluted at the lateral gravity current. As the main channel discharge increases, the symmetry plume is broken, and the dense fluid propagation is limited toward the confluence upstream. The time-evolution of discharged spatially averaged density decreases due to increasing the main channel discharge. The mixing process assessment indicated that the entrainmant of the lateral gravity current without the main channel discharge is more intense compared with the cases having discharge. The decreasing lateral Froude number associated with increasing main channel discharge leads to a decrease in the entrainment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Allen J (1985) Principles of physical sedimentology. George Allen and Unwin Ltd

    Book  Google Scholar 

  2. Simpson J (1997) Gravity currents. Cambridge University Press, Cambridge

    Google Scholar 

  3. Elias RN, Paraizo PL, Coutinho AL (2008) Stabilized edge based finite element computation of gravity currents in lock-exchange configurations. Int J Numer Meth Fluids 57(9):1137–1152

    Article  Google Scholar 

  4. Keulegan GH (1950) Interfacial instability and mixing in stratified flows. US Department of Commerce, National Bureau of Standards

  5. Simpson JE, Britter RE (1979) The dynamics of the head of a gravity current advancing over a horizontal surface. J Fluid Mech 94(3):477–495

    Article  Google Scholar 

  6. Huppert HE, Simpson JE (1980) The slumping of gravity currents. J Fluid Mech 99(4):785–799

    Article  Google Scholar 

  7. Garcia M, Parker G (1993) Experiments on the entrainment of sediment into suspension by a dense bottom current. J Geophys Res: Oceans 98(C3):4793–4807

    Article  Google Scholar 

  8. García MH, Parsons JD (1996) Mixing at the front of gravity currents. Dyn Atmos Oceans 24(1–4):197–205

    Article  Google Scholar 

  9. Hacker J, Linden PF, Dalziel SB (1996) Mixing in lock-release gravity currents. Dyn Atmos Oceans 24(1–4):183–195

    Article  Google Scholar 

  10. Hallworth MA, Huppert HE, Phillips JC, Sparks RS (1996) Entrainment into two-dimensional and axisymmetric turbulent gravity currents. J Fluid Mech 308:289–311

    Article  Google Scholar 

  11. Parsons JD, Garcıa MH (1998) Similarity of gravity current fronts. Phys Fluids 10(12):3209–3213

    Article  Google Scholar 

  12. Kneller BC, Bennett SJ, McCaffrey WD (1999) Velocity structure, turbulence and fluid stresses in experimental gravity currents. J Geophys Res: Oceans 104(C3):5381–5391

    Article  Google Scholar 

  13. Peakall J, Amos KJ, Keevil GM, Bradbury PW, Gupta S (2007) Flow processes and sedimentation in submarine channel bends. Mar Pet Geol 24(6–9):470–486

    Article  Google Scholar 

  14. Shin JO, Dalziel SB, Linden PF (2004) Gravity currents produced by lock exchange. J Fluid Mech 521:1–34

    Article  Google Scholar 

  15. Sequeiros OE, Spinewine B, Beaubouef RT, Sun T, Garcia MH, Parker G (2010) Bedload transport and bed resistance associated with density and turbidity currents. Sedimentology 57(6):1463–1490

    Article  Google Scholar 

  16. Islam MA, Imran J (2008) Experimental modeling of gravity underflow in a sinuous submerged channel. J Geophys Res: Oceans 113(C7):58

    Google Scholar 

  17. Ezz H, Cantelli A, Imran J (2013) Experimental modeling of depositional turbidity currents in a sinuous submarine channel. Sed Geol 290:175–187

    Article  Google Scholar 

  18. Paik J, Eghbalzadeh A, Sotiropoulos F (2009) Three-Dimensional unsteady RANS modeling of discontinuous gravity currents in rectangular domains. J Hydraul Eng 135(6):505–521

    Article  Google Scholar 

  19. Huang H, Imran J, Pirmez C (2008) Numerical study of turbidity currents with sudden-release and sustained-inflow mechanisms. J Hydraul Eng 134(9):1199–1209

    Article  Google Scholar 

  20. Gerber G, Diedericks G, Basson GR (2010) Particle image velocimetry measurements and numerical modeling of a saline density current. J Hydraul Eng 137(3):333–342

    Article  Google Scholar 

  21. Adduce C, Sciortino G, Proietti S (2011) Gravity currents produced by lock exchanges: experiments and simulations with a two-layer shallow-water model with entrainment. J Hydraul Eng 138(2):111–121

    Article  Google Scholar 

  22. Härtel C, Meiburg E, Necker F (2000) Analysis and direct numerical simulation of the flow at a gravity-current head. part 1. flow topology and front speed for slip and no-slip boundaries. J Fluid Mech 418:189–212

    Article  Google Scholar 

  23. Necker F, Härtel C, Kleiser L, Meiburg E (2002) High-resolution simulations of particle-driven gravity currents. Int J Multiph Flow 28(2):279–300

    Article  Google Scholar 

  24. Necker F, Härtel C, Kleiser L, Meiburg E (2005) Mixing and dissipation in particle-driven gravity currents. J Fluid Mech 545:339–372

    Article  Google Scholar 

  25. Birman VK, Martin JE, Meiburg E (2005) The non-Boussinesq lock-exchange problem. part 2 high-resolution simulations. J Fluid Mech 537:125–144

    Article  Google Scholar 

  26. Ooi SK (2006) High resolution numerical simulations of lock-exchange gravity-driven flows. University of Iowa

    Book  Google Scholar 

  27. Ooi SK, Constantinescu G, Weber LJ (2006) Numerical simulation of lock-exchange gravity driven flows. IIHR Technical Rep 450

  28. Ooi SK, Constantinescu G, Weber LJ (2007) 2D large-eddy simulation of lock-exchange gravity current flows at high Grashof numbers. J Hydraul Eng 133(9):1037–1047

    Article  Google Scholar 

  29. An S, Julien PY, Venayagamoorthy SK (2012) Numerical simulation of particle-driven gravity currents. Environ Fluid Mech 12(6):495–513

    Article  Google Scholar 

  30. Tokyay TE, García MH (2014) Effect of initial excess density and discharge on constant flux gravity currents propagating on a slope. Environ Fluid Mech 14(2):409–429

    Article  Google Scholar 

  31. Jackson PR, García CM, Oberg KA, Johnson KK, García MH (2008) Density currents in the Chicago River: characterization, effects on water quality, and potential sources. Sci Total Environ 401(1–3):130–143

    Article  Google Scholar 

  32. Ribeiro CH, Waniek JJ, Sharples J (2004) Observations of the spring–neap modulation of the gravitational circulation in a partially mixed estuary. Ocean Dyn 54(3–4):299–306

    Google Scholar 

  33. Lyubimova T, Lepikhin A, Konovalov V, Parshakova Y, Tiunov A (2014) Formation of the density currents in the zone of confluence of two rivers. J Hydrol 508:328–342

    Article  Google Scholar 

  34. Guide R (1989) Best Estimate Calculations of Emergency Core Cooling System Performance. US Nuclear Regulatory Commission

  35. Buschman FA, Van Der Vegt M, Hoitink AJ, Hoekstra P (2013) Water and suspended sediment division at a stratified tidal junction. J Geophys Res: Oceans 118(3):1459–1472

    Article  Google Scholar 

  36. Imran J, Kassem A, Khan SM (2004) Three-dimensional modeling of density current i flow in straight confined and unconfined channels. J Hydraul Res 42(6):578–90

    Article  Google Scholar 

  37. Warner J, Schoellhamer D, Burau J, Schladow G (2002) Effects of tidal current phase at the junction of two straits. Cont Shelf Res 22(11–13):1629–1642

    Article  Google Scholar 

  38. Ismail H (2017) Confluence of density currents produced by lock -exchange. University of South Carolina

    Google Scholar 

  39. Bombardelli FA, García MH (2001) Simulation of density currents in urban environments. Application to the Chicago River, Illinois. In: Proceedings, 3rd. International Symposium Environmental Hydraulics

  40. García CM, Manríquez C, Oberg K, García MH (2005) Density currents in the Chicago River, Illinois. River, Coastal and Estuarine Morphodynamics: RCEM 191–202

  41. García CM, Oberg K, García MH (2007) ADCP measurements of gravity currents in the Chicago River Illinois. J Hydraul Eng 133(12):1356–1366

    Article  Google Scholar 

  42. Ismail H, Viparelli E, Imran J (2016) Confluence of density currents over an erodible bed. J Geophys Res Earth Surf 121(7):1251–1272

    Article  Google Scholar 

  43. Ramón CL, Prats J, Rueda FJ (2016) The influence of flow inertia, buoyancy, wind, and flow unsteadiness on mixing at the asymmetrical confluence of two large rivers. J Hydrol 539:11–26

    Article  Google Scholar 

  44. Yakhot VS, Orszag SA, Thangam S, Gatski TB, Speziale CG (1992) Development of turbulence models for shear flows by a double expansion technique. Phys Fluids A 4(7):1510–1520

    Article  Google Scholar 

  45. Javan M, Mahmodinia S, Hasani H (2017) Development and validation of a Lagrangian method for 3D turbulent flows with curvilinear free-surface. Environ Fluid Mech 17(6):1153–1170

    Article  Google Scholar 

  46. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York

    Google Scholar 

  47. Chen HC, Patel VC (1988) Near-wall turbulence models for complex flows including separation. AIAA J 26(6):641–648

    Article  Google Scholar 

  48. Mahmodinia S, Javan M (2018) Three-dimensional features in non-equal and opposing flow junctions. Acta Mech 229(11):4357–4374

    Article  Google Scholar 

  49. Javan M, Eghbalzadeh A (2013) 2D numerical simulation of submerged hydraulic jumps. Appl Math Model 37(10–11):6661–6669

    Article  Google Scholar 

  50. Mahmodinia S, Javan M (2020) Mixing process in opposing flow junction with different angles and junction radii. Acta Geophys 68:795–809

    Article  Google Scholar 

  51. Mahmodinia S, Javan M (2021) Continuous and discontinuous gravity currents in open-channel embayments. Environ Sci Pollut Res 5:1–19

    Google Scholar 

  52. Frizzell CS, Khan AA, Werth DE (2008) Numerical simulation of equal and opposing subcritical flow junctions. J Hydraul Eng 134(2):267–273

    Article  Google Scholar 

  53. Mignot E, Cai W, Launay G, Riviere N, Escauriaza C (2016) Coherent turbulent structures at the mixing-interface of a square open-channel lateral cavity. Phys Fluids 28(4):045104

    Article  Google Scholar 

  54. Mignot E, Cai W, Polanco JI, Escauriaza C, Riviere N (2017) Measurement of mass exchange processes and coefficients in a simplified open-channel lateral cavity connected to a main stream. Environ Fluid Mech 17(3):429–448

    Article  Google Scholar 

  55. Weber LJ, Schumate ED, Mawer N (2001) Experiments on flow at a 90 open-channel junction. J Hydraul Eng 127(5):340–350

    Article  Google Scholar 

  56. Mizumura K, Yamasaka M (2002) Flow in open-channel embayments. J Hydraul Eng 128(12):1098–1101

    Article  Google Scholar 

  57. Jackson TR, Apte SV, Haggerty R (2014) Effect of multiple lateral cavities on stream solute transport under non-Fickian conditions and at the Fickian asymptote. J Hydrol 519:1707–1722

    Article  Google Scholar 

  58. Wang P (2017) A high-order spatiotemporal precision-matching Taylor–Li scheme for time-dependent problems. Adv Atmos Sci 34(12):1461–1471

    Article  Google Scholar 

  59. Hussain F, Jeong J (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  Google Scholar 

  60. Cantero MI, Balachandar S, Garcia MH (2007) High-resolution simulations of cylindrical density currents. J Fluid Mech 590:437–469

    Article  Google Scholar 

  61. Ooi SK, Constantinescu G, Weber LJ (2009) Numerical simulations of lock-exchange compositional gravity current. J Fluid Mech 635:361–388

    Article  Google Scholar 

  62. Geyer WR, Hill P, Milligan T, Traykovski P (2000) The structure of the Eel River plume during floods. Cont Shelf Res 20(16):2067–2093

    Article  Google Scholar 

  63. Godin G (1991) Frictional effects in river tides. Tidal Hydrodyn 379:402

    Google Scholar 

  64. Kukulka T, Jay DA (2003) Impacts of Columbia River discharge on salmonid habitat: 1. a nonstationary fluvial tide model. J Geophys Res: Oceans 108(C9):45

    Google Scholar 

  65. Jia Y, Whitney MM (2019) Summertime connecticut river water pathways and wind impacts. J Geophys Res: Oceans 124(3):1897–1914

    Article  Google Scholar 

  66. Kenworthy ST, Rhoads BL (1995) Hydrologic control of spatial patterns of suspended sediment concentration at a stream confluence. J Hydrol 168(1–4):251–263

    Article  Google Scholar 

  67. Ottolenghi L, Adduce C, Inghilesi R, Armenio V, Roman F (2016) Entrainment and mixing in unsteady gravity currents. J Hydraul Res 54(5):541–557

    Article  Google Scholar 

  68. Hunt JCR, Rottman JW, Britter RE (1983) Some physical processes involved in the dispersion of dense gases. In Proc. IUTAM Symp. on Atmospheric Dispersion of Heavy Gases and Small Particles: 361–395

  69. Balasubramanian S, Zhong Q (2018) Entrainment and mixing in lock-exchange gravity currents using simultaneous velocity-density measurements. Phys Fluids 30(5):056601

    Article  Google Scholar 

  70. Jacobson MR, Testik FY (2014) Turbulent entrainment into fluid mud gravity currents. Environ Fluid Mech 14(2):541–563

    Article  Google Scholar 

  71. Cenedese C, Adduce C (2008) Mixing in a density-driven current flowing down a slope in a rotating fluid. J Fluid Mech 604:369–388

    Article  Google Scholar 

  72. Cenedese C, Adduce C (2010) A new parameterization for entrainment in overflows. J Phys Oceanogr 40(8):910

    Article  Google Scholar 

  73. Nogueira HIS, Adduce C, Alves E, Franca MJ (2014) Dynamics of the head of gravity currents. Environ Fluid Mech 14:519–540

    Article  Google Scholar 

  74. Ellison TH, Turner JS (1959) Turbulent entrainment in stratified flows. J Fluid Mech 6(3):423–448

    Article  Google Scholar 

  75. Johnson CG, Hogg AJ (2013) Entraining gravity currents. J Fluid Mech 731:477–508

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitra Javan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmodinia, S., Javan, M. Vortical structures, entrainment and mixing process in the lateral discharge of the gravity current. Environ Fluid Mech 21, 1035–1067 (2021). https://doi.org/10.1007/s10652-021-09808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-021-09808-3

Keywords

Navigation