Towards enhancing tidally-induced water renewal in coastal lagoons


In order to address the problem of limited water renewal in restricted lagoons of moderate size having at least two tidal inlets, a method is proposed to enhance water exchange between the lagoon and the open sea. The method consists of altering either the amplitude or the phase of the tide in one of the inlets. It is shown in the paper that this will result in an alteration of the function of the lagoon, from a lagoon periodically exchanging water equal to a tidal prism within each tidal cycle with the adjacent water body, towards an effectively flow through system, substantially improving the flushing rate of the lagoon. The method is confirmed by running a series of numerical experiments simulating tidal hydrodynamics in the Papas lagoon. The question of how to alter the tidal amplitude is briefly touched upon, by numerically testing the performance of artificially macro-roughening an inlet and alternatively, designing an inlet to have a meandering shape. It was found that both modifications produce a diminished tidal amplitude, providing positive evidence for the applicability of the proposed method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Corsi F, Ardizzone GD (1985) Some environmental conditions affecting yellow eels catchability. Oebalia 11:561–571

    Google Scholar 

  2. 2.

    Chauvet C (1988) Manuel Sur I Amenagement Des Peches Dans Les Lagunes Cotieres La Bordigue Mediterraneenne. Fao Document Technique Sur Les Peches 290:78. Food and Agriculture Organization of the United Nations (FAO): Rome, Italy.

  3. 3.

    Kjerfve B (1986) Comparative oceanography of coastal lagoons. In Estuarine Variability. Kennedy, V.S., Ed.; Academic Press: New York, NY, USA.

  4. 4.

    Andréfouët S, Pagés J, Tartinville B (2001) Water renewal time for classification of atoll lagoons in the Tuamotu Archipelago (French Polynesia). Coral Reefs 20:399–408.

    Article  Google Scholar 

  5. 5.

    Aubrey DG, Giese GS (1993) Formation and Evolution of Multiple Tidal Inlets. American Geophysical Union, Washington, DC, USA.

    Google Scholar 

  6. 6.

    Cladas Y, Papantoniou G, Bekiari V, Fragkopoulou N (2016) Dystrophic crisis event in Papas Lagoon, Araxos Cape, Western Greece in the summer 2012. Mediterr Mar Sci 17:32–38.

    Article  Google Scholar 

  7. 7.

    Cavalcante GH, Kjerfve B, Feary DA (2012) Examination of residence time and its relevance to water quality within a coastal mega-structure: the Palm Jumeirah Lagoon. J Hydrol 468:111–119.

    Article  Google Scholar 

  8. 8.

    Umgiesser G, Ferrarin C, Cucco A, De Pascalis F, Bellafiore D, Ghezzo M, Bajo M (2014) Comparative hydrodynamics of 10 Mediterranean lagoons by means of numerical modeling. J Geophys Res Oceans 119:2212–2226.

    Article  Google Scholar 

  9. 9.

    Mahanty M, Mohanty P, Pattnaik A, Panda U, Pradhan S, Samal R (2016) Hydrodynamics, temperature/salinity variability and residence time in the Chilika lagoon during dry and wet period: measurement and modeling. Cont Shelf Res 125:28–43.

    Article  Google Scholar 

  10. 10.

    Ranjbar MH, Zaker HN (2018) Numerical modeling of general circulation, thermohaline structure and residence time in Gorgan Bay, Iran. Ocean Dyn 68:35–46.

    Article  Google Scholar 

  11. 11.

    Montaño-Ley Y, Soto-Jiménez MF (2019) A numerical investigation of the influence time distribution in a shallow coastal lagoon environment of the Gulf of California. Environ Fluid Mech 19:137–155.

    Article  Google Scholar 

  12. 12.

    Atoui A, Smeti H, Sammari C, Ben Ismail S (2020) Water renewal in the Boughrara lagoon (Tunisia, central Mediterranean Sea) under tidal forcing. Estuar Coast Shelf Sci 238:106680.

    Article  Google Scholar 

  13. 13.

    Cerralbo P, Pedrera Balsells M, Mestres M, Fernandez M, Espino M, Grifoll M, Sanchez-Arcilla A (2019) Use of a hydrodynamic model for the management of water renovation in a coastal system. Ocean Sci 15:21–226.

    Article  Google Scholar 

  14. 14.

    Fourniotis NT, Horsch GM, Leftheriotis GA (2018) On the Hydrodynamic Geometry of Flow-Through versus Restricted Lagoons. Water 10:237.

    Article  Google Scholar 

  15. 15.

    Papatheodorou G, Avramidis P, Fakiris E, Christodoulou D, Kontopoulos N (2012) Bed diversity in the shallow water environment of Pappas Lagoon in Greece. Int J Sediment Res 27:1–17.

    Article  Google Scholar 

  16. 16.

    Krasakopoulou E, Pagou K (2011) Seasonal steady-state budgets of nutrients and stoichiometric calculations in an Eastern Mediterranean lagoon (Papas Lagoon-Greece). Mediterr Mar Sci. 12:21–41.

    Article  Google Scholar 

  17. 17.

    National Centre for Marine Research (2000) Monitoring of the Papas Lagoon (Cape Araxos/Achaia) Ecosystem-Management and Protection Proposal, Final Technical Report, Pagou K, Ed. NCMR: Athens, Greece. (In Greek)

  18. 18.

    Papantoniou G, Cladas Y, Ketsilis-Rinis V, Vaitsi Z, Fragopoulu N (2020) Effects of HABs and a dystrophic event on zooplankton community structure in a Mediterranean lagoon (W Greece). Estuar Coast Shelf Sci 245:106985.

    Article  Google Scholar 

  19. 19.

    DHI (2018) MIKE 21 FLOW MODEL FM. Hydrodynamic Module-User Guide, DHI Software., p 132

    Google Scholar 

  20. 20.

    DHI (2018) MIKE 3 FLOW MODEL FM. Hydrodynamic Module-User Guide, DHI Software., p 138

    Google Scholar 

  21. 21.

    DHI (2018) MIKE 3 FLOW MODEL FM. Transport Module-User Guide, DHI Software., p 46

    Google Scholar 

  22. 22.

    Leschziner M (2016) Statistical Turbulence Modelling for Fluid Dynamics-Demystified. Imperial College Press, pp. 407.

  23. 23.

    De Marchis M, Ciraolo G, Nasello, et al (2012) Wind- and tide-induced currents in the Stagnone lagoon (Sicily). Environ Fluid Mech 12:81–100.

    Article  Google Scholar 

  24. 24.

    Papanicolaou AN, Elhakeel M, Krallis G, Prakash S, Edinger J (2008) Sediment transport modelling review-current and future development. J Hydraul Eng 134(1):1–14.

    Article  Google Scholar 

  25. 25.

    Moharir RV, Khairnar K, Paunikar WN (2014) MIKE 3 as a modeling tool for flow characterization: a review of applications on water bodies. Int J Adv Stud Comput Sci Eng 3(3):32–43

    Google Scholar 

  26. 26.

    Rodi W (1984) Turbulence models and their applications in hydraulics. IAHR, Delft, the Netherlands

    Google Scholar 

  27. 27.

    Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment Mon Weather Rev 91(3):99–165.;2

    Article  Google Scholar 

  28. 28.

    Roe PL (1981) Approximate Riemann solvers, parameter vectors and difference-schemes. J Comput Phys 43:357–372.

    Article  Google Scholar 

  29. 29.

    Achilleopoulos P (1990) Tides in Gulfs and Straits of Western Greece. Ph.D. Thesis, University of Patras, Patras, Greece. (In Greek)

  30. 30.

    Horsch GM, Fourniotis NT (2017) Wintertime Tidal Hydrodynamics in the Gulf of Patras, Greece. J Coast Res 33(6):1305–1314.

    Article  Google Scholar 

  31. 31.

    Fourniotis NT, Horsch GM (2015) Baroclinic circulation in the Gulf of Patras (Greece). Ocean Eng 104:238–248.

    Article  Google Scholar 

  32. 32.

    Papailiou DD (1982) Oceanographical Study in Patras Gulf Waters for Pollution Management, University of Patras, Department of Mechanical Engineering: Patras, Greece, Volume 2, p. 161. (In Greek)

  33. 33.

    Cladas Y, Papantoniou G, Ketsilis V, Fragopoulou N (2013) Dystrophic crisis event Papas Lagoon (Araxos Achaia). 15th Panhellenic Conference of Ichthyologists, Aquatic Ecosystems: Uses, Impact and Management, Thessaloniki, Greece. (In Greek)

  34. 34.

    Monsen N, Cloern J, Lucas L, Monismith S (2002) A comment on the use of flushing time, residence time and age as transport time scales. Limnol Oceanogr 47:1545–1553.

    Article  Google Scholar 

  35. 35.

    Stamou AI, Loverdou L, Matsoukis C, Albanis T, Gkesouli A (2012) Modeling renewal times in Amvrakikos gulf, Greece. Global NEST J 14:386–392.

    Article  Google Scholar 

Download references


The writers’ understanding of the potential role of lagoon water renewal in dystrophic crises has been considerably enhanced by discussions with Professors Y. Cladas and C. Koutsikopoulos of the University of Patras; their help is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Georgios M. Horsch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fourniotis, N.T., Leftheriotis, G.A. & Horsch, G.M. Towards enhancing tidally-induced water renewal in coastal lagoons. Environ Fluid Mech (2021).

Download citation


  • Lagoon
  • MIKE 3 FM (HD
  • TR)
  • Tidal hydrodynamics
  • Tidal inlet
  • Improving water renewal