Skip to main content
Log in

A three-dimensional numerical study of flow characteristics in strongly curved channel bends with different side slopes

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The influence of channel side slope on flow in strongly curved channel bends is studied numerically. The performances of five different turbulence models are investigated. Comparison to experimental measurements demonstrates that the fully 3D numerical model can reliably simulate a channel bend flow field. Among the tested turbulence models, the realizable k − ε model performed best. The present study also demonstrates that the realizable k − ε model can satisfactorily predict smaller flow features in bend flow, such as the outer-bank circulation cell. The validated model is employed to carry out additional computations for channel bends with different side slopes. It is found that the number, position, and strength of secondary flow cells varies with the channel side slope, with corresponding influence on flow distribution and flow vorticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prandtl L (1952) Essentials of fluid dynamics. Hafner Publishing Company, New York

    Google Scholar 

  2. Wang ZQ, Cheng NS (2006) Time-mean structure of secondary flows in open channel with longitudinal bedforms. Adv Water Resour 29(11):1634–1649

    Article  Google Scholar 

  3. Lien HC, Hsieh TY, Yang JC, Yeh KC (1999) Bend-flow simulation using 2D depth-averaged model. J Hydraul Eng 125(10):1097–1108

    Article  Google Scholar 

  4. Blanckaert K, de Vriend HJ (2003) Nonlinear modeling of mean flow redistribution in curved open channels. Water Resour Res 39(12):1–14

    Article  Google Scholar 

  5. Khosronejad A, Rennie CD, Salehi Neyshabouri SAA, Townsend RD (2007) 3D numerical modeling of flow and sediment transport in laboratory channel bends. J Hydraul Eng 133(10):1123–1134

    Article  Google Scholar 

  6. Gholami A, Akbar Akhtari A, Minatour Y, Bonakdari H, Javadi AA (2014) Experimental and numerical study on velocity fields and water surface profile in a strongly-curved 90 open channel bend. Eng Appl Comput Fluid Mech 8(3):447–461

    Google Scholar 

  7. Russell P, Vennell R (2019) High Resolution Observations of an Outer-Bank Cell of Secondary Circulation in a Natural River Bend. J Hydraul Eng 145(5):04019012

    Article  Google Scholar 

  8. Kashyap S, Constantinescu G, Rennie CD, Post G, Townsend R (2012) Influence of channel aspect ratio and curvature on flow, secondary circulation, and bed shear stress in a rectangular channel bend. J Hydraul Eng 138(12):1045–1059

    Article  Google Scholar 

  9. Solari L, Seminara G, Lanzoni S, Marani M, Rinaldo A (2002) Sand bars in tidal channels part 2. Tidal meanders. J Fluid Mech 451:203–238

    Article  Google Scholar 

  10. Hickin EJ (1978) Mean flow structure in meanders of the Squamish River, British Columbia. Can J Earth Sci 15(11):1833–1849

    Article  Google Scholar 

  11. Hickin EJ, Nanson GC (1984) Lateral migration rates of river bends. J Hydraul Eng 110(11):1557–1567

    Article  Google Scholar 

  12. Finotello A, D’Alpaos A, Lazarus ED, Lanzoni S (2019) High curvatures drive river meandering COMMENT. Geology 47(10):e486

    Article  Google Scholar 

  13. Hickin EJ, Nanson GC (1984) Lateral migration rates of river bends. J Hydraul Eng 110:1557–1567

    Article  Google Scholar 

  14. Sylvester Z, Durkin P, Covault JA (2019) High curvatures drive river meandering. Geology 47(10):e486

    Article  Google Scholar 

  15. Blanckaert K, De Vriend HJ (2004) Secondary flow in sharp open-channel bends. J Fluid Mech 498:353–380

    Article  Google Scholar 

  16. Blanckaert K (2009) Saturation of curvature-induced secondary flow, energy losses, and turbulence in sharp open-channel bends: laboratory experiments, analysis, and modeling. J Geophys Res Solid Earth 114(3):1–23

    Google Scholar 

  17. Tominaga A, Nezu I, Ezaki K, Nakagawa H (1989) Three-dimensional turbulent structure in straight open channel flows. J Hydraul Res 27(1):149–173

    Article  Google Scholar 

  18. Seyedian SM, Bajestan MS, Farasati M (2014) Effect of bank slope on the flow patterns in river intakes. J Hydrodyn 26(3):482–492

    Article  Google Scholar 

  19. Xiao Y, Wang N, Liang D, Liu J (2018) Flow structures in trapezoidal compound channels with different side slopes of main channel. Int J Civ Eng 16(7):1–13

    Article  Google Scholar 

  20. Pilechi A, Rennie CD, Mohammadian A, Zhu DZ (2015) In situ spatially distributed field measurements of transverse dispersion of a wastewater effluent in an extended natural meandering river. J Hydraul Res 53(1):20–35

    Article  Google Scholar 

  21. van Balen W, Blanckaert K, Uijttewaal WS (2010) Analysis of the role of turbulence in curved open-channel flow at different water depths by means of experiments, LES and RANS. J Turbul 11:N12

    Article  Google Scholar 

  22. Wendt JF (ed) (2008) Computational fluid dynamics: an introduction. Springer, New York

    Google Scholar 

  23. Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J (1995) A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids 24(3):227–238

    Article  Google Scholar 

  24. Kheirkhah Gildeh H, Mohammadian A, Nistor I, Qiblawey H (2014) Numerical modeling of turbulent buoyant wall jets in stationary ambient water. J Hydraul Eng 140(6):04014012

    Article  Google Scholar 

  25. Shaheed R, Mohammadian A, Gildeh HK (2018) A comparison of standard k − ε and realizable k − ε turbulence models in curved and confluent channels. Environ Fluid Mech 19(2):1–26

    Google Scholar 

  26. Jamieson EC, Post G, Rennie CD (2010) Spatial variability of three dimensional Reynolds stresses in a developing channel bend. Earth Surf Proc Land 35(9):1029–1043

    Article  Google Scholar 

  27. Jamieson EC, Rennie CD, Townsend RD (2012) Turbulence and vorticity in a laboratory channel bend at equilibrium clear-water scour with and without stream barbs. J Hydraul Eng 139(3):259–268

    Article  Google Scholar 

  28. Jamieson EC, Rennie CD, Townsend RD (2013) 3D flow and sediment dynamics in a laboratory channel bend with and without stream barbs. J Hydraul Eng 139(2):154–166

    Article  Google Scholar 

  29. Constantinescu G, Kashyap S, Tokyay T, Rennie CD, Townsend RD (2013) Hydrodynamic processes and sediment erosion mechanisms in an open channel bend of strong curvature with deformed bathymetry. J Geophys Res Earth Surf 118(2):480–496

    Article  Google Scholar 

  30. Schreiner HK, Rennie CD, Mohammadian A (2018) Trajectory of a jet in crossflow in a channel bend. Environ Fluid Mech 18(6):1–19

    Article  Google Scholar 

  31. Chow VT (1959) Open-channel hydraulics. McGraw-Hill Book Co., New York

    Google Scholar 

  32. Bankston JD, Baker FE (1995) Open channel flow in aquaculture. Publication No. 374, Southern Regional Aquaculture Center, Texas A&M University, College Station, TX

  33. Yan X, Mohammadian A (2017) Numerical modeling of vertical buoyant jets subjected to lateral confinement. J Hydraul Eng 143(7):04017016

    Article  Google Scholar 

  34. Yan X, Mohammadian A (2019) Numerical modeling of multiple inclined dense jets discharged from moderately spaced ports. Water 11:1–15. https://doi.org/10.3390/w11102077

    Article  Google Scholar 

  35. Yan X, Mohammadian A, Chen X (2019) Three-dimensional numerical simulations of buoyant jets discharged from a rosette-type multiport diffuser. J Mar Sci Eng 7(11):409

    Article  Google Scholar 

  36. Yan X, Mohammadian A, Rennie CD (2019) Numerical modeling of flow and local scour around a pipeline in steady currents using moving mesh with masked elements. J Hydraul Eng. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001740

    Article  Google Scholar 

  37. Yan X, Mohammadian A, Rennie CD (2020) Numerical modeling of local scour due to submerged wall jets using a strict vertex-based terrain conformal moving-mesh technique in OpenFOAM. Int J Sedim Res. https://doi.org/10.1016/j.ijsrc.2019.12.007

    Article  Google Scholar 

  38. Yan X, Ghodoosipour B, Mohammadian (2020) Three-dimensional numerical study of multiple vertical buoyant jets in stationary ambient water. J Hydraul Eng. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001768

    Article  Google Scholar 

  39. Zeng J, Constantinescu G, Blanckaert K, Weber L (2008) Flow and bathymetry in sharp open channel bends: experiments and predictions. Water Resour Res 44(9):1–22

    Article  Google Scholar 

  40. Nezu I, Nakagawa H (1984) Cellular secondary currents in straight conduit. J Hydraul Eng 110(2):173–193

    Article  Google Scholar 

  41. Knight DW, Patel HS (1985) Boundary shear in smooth rectangular ducts. J Hydraul Eng 111(1):29–47

    Article  Google Scholar 

  42. Knight DW, Omran M, Tang X (2007) Modeling depth-averaged velocity and boundary shear in trapezoidal channels with secondary flows. J Hydraul Eng 133(1):39–47

    Article  Google Scholar 

  43. Blanckaert K (2011) Hydrodynamic processes in sharp meander bends and their morphological implications. J Geophys Res Earth Surf 116:1–22

    Article  Google Scholar 

  44. Kang T, Kimura I, Shimizu Y (2018) Responses of bed morphology to vegetation growth and flood discharge at a sharp river bend. Water 10(2):223

    Article  Google Scholar 

  45. Parsapour-Moghaddam P, Rennie CD (2018) Calibration of a 3D hydrodynamic meandering river model using fully spatially distributed 3D ADCP velocity data. J Hydraul Eng 144(4):04018010

    Article  Google Scholar 

Download references

Acknowledgements

The experimental data were collected by Benoît Doutreleau. This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grants). The first author is a recipient of a scholarship from the China Scholarship Council (CSC). The authors thank the Editors and the anonymous reviewers for their careful reading of this manuscript, and their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: turbulence models

Appendix: turbulence models

The standard k − ε model:

$$\frac{\partial k}{\partial t} + \frac{{\partial ku_{i} }}{{\partial x_{i} }} - \frac{\partial }{{\partial x_{i} }}\left( {D_{keff} \frac{\partial k}{{\partial x_{i} }}} \right) = G - \varepsilon$$
(23)
$$\frac{\partial \varepsilon }{\partial t} + \frac{{\partial \varepsilon u_{i} }}{{\partial x_{i} }} - \frac{\partial }{{\partial x_{i} }}\left( {D_{\varepsilon eff} \frac{\partial \varepsilon }{{\partial x_{i} }}} \right) = c_{1\varepsilon } \frac{\varepsilon }{k}G - c_{2\varepsilon } \frac{{\varepsilon^{2} }}{k}$$
(24)
$$D_{keff} = \nu_{t} + \nu$$
(25)
$$D_{\varepsilon eff} = \frac{{\nu_{t} }}{{\sigma_{\varepsilon } }} + \nu$$
(26)
$$\nu_{t} = c_{\mu } \frac{{k^{2} }}{\varepsilon }$$
(27)
$$G = 2\nu_{t} S_{ij} S_{ij}$$
(28)
$$S_{ij} = \frac{1}{2}\left( {\frac{{\partial u_{j} }}{{\partial x_{i} }} + \frac{{\partial u_{i} }}{{\partial x_{j} }}} \right)$$
(29)

where σε, c, c, cμ are model constants equal to 1.3, 1.44, 1.92, and 0.09, respectively.

The RNG k − ε model:

$$\frac{\partial k}{\partial t} + \frac{{\partial ku_{i} }}{{\partial x_{i} }} - \frac{\partial }{{\partial x_{i} }}\left( {D_{keff} \frac{\partial k}{{\partial x_{i} }}} \right) = G - \varepsilon$$
(30)
$$\frac{\partial \varepsilon }{\partial t} + \frac{{\partial \varepsilon u_{i} }}{{\partial x_{i} }} - \frac{\partial }{{\partial x_{i} }}\left( {D_{\varepsilon eff} \frac{\partial \varepsilon }{{\partial x_{i} }}} \right) = \left( {c_{1\varepsilon } - R_{\varepsilon } } \right)\frac{\varepsilon }{k}G - c_{2\varepsilon } \frac{{\varepsilon^{2} }}{k}$$
(31)
$$D_{keff} = \frac{{\nu_{t} }}{{\sigma_{k} }} + \nu$$
(32)
$$D_{\varepsilon eff} = \frac{{\nu_{t} }}{{\sigma_{\varepsilon } }} + \nu$$
(33)
$$\nu_{t} = c_{\mu } \frac{{k^{2} }}{\varepsilon }$$
(34)
$$G = \nu_{t} S_{2}$$
(35)
$$S_{2} = 2S_{ij} S_{ij}$$
(36)
$$S_{ij} = \frac{1}{2}\left( {\frac{{\partial u_{j} }}{{\partial x_{i} }} + \frac{{\partial u_{i} }}{{\partial x_{j} }}} \right)$$
(37)
$$R_{\varepsilon } = \frac{{\eta \left( {1 - {\eta \mathord{\left/ {\vphantom {\eta {\eta_{0} }}} \right. \kern-0pt} {\eta_{0} }}} \right)}}{{1 + \beta \eta^{3} }}$$
(38)
$$\eta = \sqrt {S_{2} } \frac{k}{\varepsilon }$$
(39)

where σk, σε, c, c, cμ, η0, and β are model constants equal to 0.71942, 0.71942, 1.42, 1.68, 0.0845, and 0.012 respectively.

The k − ω model:

$$\frac{\partial k}{\partial t} + \frac{{\partial ku_{i} }}{{\partial x_{i} }} - \frac{\partial }{{\partial x_{i} }}\left( {D_{keff} \frac{\partial k}{{\partial x_{i} }}} \right) = G - c_{\mu } k\omega$$
(40)
$$\frac{\partial \omega }{\partial t} + \frac{{\partial \omega u_{i} }}{{\partial x_{i} }} - \frac{\partial }{{\partial x_{i} }}\left( {D_{\omega eff} \frac{\partial \omega }{{\partial x_{i} }}} \right) = \alpha_{k\omega } G\frac{\omega }{k} - \beta \omega^{2}$$
(41)
$$D_{keff} = \alpha_{k} \nu_{t} + \nu$$
(42)
$$D_{\omega eff} = \alpha_{\omega } \nu_{t} + \nu$$
(43)
$$\nu_{t} = \frac{k}{\omega }$$
(44)
$$G = 2\nu_{t} S_{ij} S_{ij}$$
(45)
$$S_{ij} = \frac{1}{2}\left( {\frac{{\partial u_{j} }}{{\partial x_{i} }} + \frac{{\partial u_{i} }}{{\partial x_{j} }}} \right)$$
(46)

where ω is the specific dissipation rate; cμ, αk, αω, α, β are model constants equal to 0.09, 0.5, 0.5, 0.52 and 0.072 respectively.

The k − ω SST model:

$$\frac{\partial k}{\partial t} + \frac{{\partial ku_{i} }}{{\partial x_{i} }} - \frac{\partial }{{\partial x_{i} }}\left( {D_{keffi} \frac{\partial k}{{\partial x_{i} }}} \right) = \hbox{min} \left( {G,c_{1} \beta^{*} k\omega } \right) - \beta^{*} k\omega$$
(47)
$$\frac{\partial \omega }{\partial t} + \frac{{\partial \omega u_{i} }}{{\partial x_{i} }} - \frac{\partial }{{\partial x_{i} }}\left( {D_{\omega eff} \frac{\partial \omega }{{\partial x_{i} }}} \right) = \gamma_{i} \hbox{min} \left[ {S_{2} ,\frac{{c_{1} }}{{a_{1} }}\beta^{*} \omega \hbox{max} \left( {a_{1} \omega ,b_{1} F_{23} \sqrt {S_{2} } } \right)} \right] - \beta \omega^{2} - \left( {F_{1} - 1} \right)CD_{k\omega }$$
(48)
$$D_{keff} = \alpha_{ki} \nu_{t} + \nu$$
(49)
$$D_{\omega effi} = \alpha_{\omega i} \nu_{t} + \nu$$
(50)
$$\nu_{t} = \frac{{a_{1} k}}{{\hbox{max} \left( {a_{1} \omega ,b_{1} F_{23} \sqrt {S_{2} } } \right)}}$$
(51)
$$S_{2} = 2S_{ij} S_{ij}$$
(52)
$$S_{ij} = \frac{1}{2}\left( {\frac{{\partial u_{j} }}{{\partial x_{i} }} + \frac{{\partial u_{i} }}{{\partial x_{j} }}} \right)$$
(53)
$$G = 2\nu_{t} S_{ij} S_{ij}$$
(54)
$$CD_{k\omega } = 2\alpha_{\omega 2} \frac{\partial k}{{\partial x_{i} }}\frac{\partial \omega }{{\partial x_{i} }}\frac{1}{\omega }$$
(55)

where the subscript i can be either 1 or 2, depending on the blending functions in the model. αk1, αk2, αω1, αω2, α1, b1, c1, β*, γ1, γ2, are model constants equal to 0.85, 1, 0.5, 0.856, 0.31, 1, 10, 0.09, 5/9, 0.44. F1 and F23 are blending functions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Rennie, C.D. & Mohammadian, A. A three-dimensional numerical study of flow characteristics in strongly curved channel bends with different side slopes. Environ Fluid Mech 20, 1491–1510 (2020). https://doi.org/10.1007/s10652-020-09751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-020-09751-9

Keywords

Navigation