Skip to main content

Bedload transport and bedforms migration under sand supply limitation

Abstract

Most studies on sediment transport and bedforms migration consider unlimited sediment supply conditions. However, areas where the sediment supply is limited are common in coastal and fluvial environments. The present paper, based on physical modelling in a flume and on a re-analysis of field data obtained in the Eastern English Channel by Ferret (Morphodynamique des dunes sous-marines en contexte de plate-forme mégatidale (manche orientale). approche multi-échelles spatio-temporelles, 2011), considers the effects of sediment supply limitation on bedload transport and bedforms migration velocity. The bedload transport is found to be proportional to the fraction of the bed covered by sediments for a bed exhibiting bedforms. The migration velocity of bedforms depends on the dominant mode of sediment transport. A new formulation showing a good agreement with experimental tests and observations in the field is proposed for the dimensionless migration velocity of these bedforms when sediment transport is dominated by bedload, under unlimited sediment supply conditions. For limited sediment supply conditions and sediment transport dominated by bedload, an adaptation of the formulation is suggested from flume data sets, based on the fraction of the bed covered by sediment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Allen J (1968) The nature and origin of bed-form hierarchies. Sedimentology 10(3):161–182

    Google Scholar 

  2. Ashley GM (1990) Classification of large-scale subaqueous bedforms; a new look at an old problem. J Sediment Res 60(1):160–172

    Google Scholar 

  3. Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, London

    Google Scholar 

  4. Bagnold RA (1966) An approach to the sediment transport problem from general physics. US government printing office

  5. Belderson R, Johnson MA, Kenyon NH (1982) Bedforms. Offshore tidal sands: processes and deposits. Chapman and Hall, London

    Google Scholar 

  6. Berni C, Perret E, Camenen B (2018) Characteristic time of sediment transport decrease in static armour formation. Geomorphology 317:1–9

    Google Scholar 

  7. Blondeaux P (2001) Mechanics of coastal forms. Annu Rev Fluid Mech 33(1):339–370

    Google Scholar 

  8. Blondeaux P, Vittori G, Mazzuoli M (2016) Pattern formation in a thin layer of sediment. Mar Geol 376:39–50

    Google Scholar 

  9. Brownlie WR (1981) Prediction of flow depth and sediment discharge in open channels. Technical Report KH-R-43A California Institute of Technology, Pasadena, CA

  10. Carling P, Golz E, Orr H, Radecki-Pawlik A (2000) The morphodynamics of fluvial sand dunes in the River Rhine, near Mainz, Germany. I. Sedimentology and morphology. Sedimentology 47(1):227–252

    Google Scholar 

  11. Carling P, Williams J, Golz E, Kelsey A (2000) The morphodynamics of fluvial sand dunes in the River Rhine, near Mainz, Germany. II. Hydrodynamics and sediment transport. Sedimentology 47(1):253

    Google Scholar 

  12. Charru F (2006) Selection of the ripple length on a granular bed sheared by a liquid flow. Phys Fluids 18(12):121508

    Google Scholar 

  13. Charru F, Andreotti B, Claudin P (2013) Sand ripples and dunes. Annu Rev Fluid Mech 45:469–493

    Google Scholar 

  14. Claude N, Rodrigues S, Bustillo V, Bréhéret JG, Macaire JJ, Jugé P (2012) Estimating bedload transport in a large sand-gravel bed river from direct sampling, dune tracking and empirical formulas. Geomorphology 179:40–57

    Google Scholar 

  15. Coleman S, Nikora V (2011) Fluvial dunes: initiation, characterization, flow structure. Earth Surf Proc Land 36(1):39–57

    Google Scholar 

  16. Colombini M, Stocchino A (2011) Ripple and dune formation in rivers. J Fluid Mech 673:121–131

    Google Scholar 

  17. Doré A (2015) Modélisation de l’évolution morphodynamique des dunes sous-marines. Ph.D. thesis, Université de Bordeaux, France

  18. Dreano J, Valance A, Lague D, Cassar C (2010) Experimental study on transient and steady-state dynamics of bedforms in supply limited configuration. Earth Surf Proc Land 35(14):1730–1743

    Google Scholar 

  19. Durafour M (2014) Dynamique sédimentaire en zone côtière dans le cas de sédiments hétérogènes: application au domaine côtier haut-normand. Ph.D. thesis, Université du Havre, France, 260 pp

  20. Durafour M, Jarno A, Le Bot S, Lafite R, Marin F (2015) Bedload transport for heterogeneous sediments. Environ Fluid Mech 15(4):731–751

    Google Scholar 

  21. Engelund F, Fredsoe J (1982) Sediment ripples and dunes. Annu Rev Fluid Mech 14(1):13–37

    Google Scholar 

  22. Fernandez Luque R, Van Beek R (1976) Erosion and transport of bed-load sediment. J Hydraul Res 14(2):127–144

    Google Scholar 

  23. Ferret Y (2011) Morphodynamique des dunes sous-marines en contexte de plate-forme mégatidale (manche orientale). approche multi-échelles spatio-temporelles. Ph.D. thesis, Université de Rouen, France, 305 pp

  24. Ferret Y, Le Bot S, Tessier B, Garlan T, Lafite R (2010) Migration and internal architecture of marine dunes in the Eastern English channel over 14 and 56 year intervals: the influence of tides and decennial storms. Earth Surf Proc Land 35(12):1480–1493

    Google Scholar 

  25. Flemming B (2000) A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Cont Shelf Res 20(10–11):1125–1137

    Google Scholar 

  26. Florez JEC, Franklin EM (2016) The formation and migration of sand ripples in closed conduits: experiments with turbulent water flows. Exp Thermal Fluid Sci 71:95–102

    Google Scholar 

  27. Folk RL (1954) The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J Geol 62(4):344–359

    Google Scholar 

  28. Franklin EM, Charru F (2011) Subaqueous barchan dunes in turbulent shear flow. Part 1. Dune motion. J Fluid Mech 675:199–222

    Google Scholar 

  29. Guy HP, Simons DB, Richardson EV (1966) Summary of alluvial channel data from flume experiments, 1956–1961. US Government Printing Office

  30. Kennedy JF (1963) The mechanics of dunes and antidunes in erodible-bed channels. J Fluid Mech 16(4):521–544

    Google Scholar 

  31. Kleinhans MG, van Rijn LC (2002) Stochastic prediction of sediment transport in sand-gravel bed rivers. J Hydraul Eng 128(4):412–425

    Google Scholar 

  32. Lane E, Carlson E (1954) Some observations on the effect of particle shape on the movement of coarse sediments. Eos Trans Am Geophys Union 35(3):453–462

    Google Scholar 

  33. Le Bot S, Trentesaux A (2004) Types of internal structure and external morphology of submarine dunes under the influence of tide-and wind-driven processes (Dover Strait, northern France). Mar Geol 211(1–2):143–168

    Google Scholar 

  34. Mazzuoli M, Kidanemariam AG, Blondeaux P, Vittori G, Uhlmann M (2016) On the formation of sediment chains in an oscillatory boundary layer. J Fluid Mech 789:461–480

    Google Scholar 

  35. Meyer-Peter E, Müller R (1948) Formulas for bed-load transport. In: IAHSR 2nd meeting, Stockholm, Appendix 2, IAHR

  36. Nielsen P (1992) Coastal bottom boundary layers and sediment transport, vol 4. Advanced series on ocean engineering. World Scientific Publishing Company, Singpore

    Google Scholar 

  37. Nielsen P (2009) Coastal and estuarine processes, vol 29. Advanced series on ocean engineering. World Scientific Publishing Company, Singapore

    Google Scholar 

  38. Nnadi FN, Wilson KC (1992) Motion of contact-load particles at high shear stress. J Hydraul Eng 118(12):1670–1684

    Google Scholar 

  39. Porcile G, Blondeaux P, Vittori G (2017) On the formation of periodic sandy mounds. Cont Shelf Res 145:68–79

    Google Scholar 

  40. Rauen WB, Lin B, Falconer RA (2009) Modelling ripple development under non-uniform flow and sediment supply-limited conditions in a laboratory flume. Estuar Coast Shelf Sci 82(3):452–460

    Google Scholar 

  41. Ribberink JS (1998) Bed-load transport for steady flows and unsteady oscillatory flows. Coast Eng 34(1–2):59–82

    Google Scholar 

  42. Seminara G (2010) Fluvial sedimentary patterns. Annu Rev Fluid Mech 42:43–66

    Google Scholar 

  43. Sleath JF (1984) Sea bed mechanics. Wiley, New York, NY

    Google Scholar 

  44. Soulsby R (1997) Dynamics of marine sands: a manual for practical applications. Thomas Telford

  45. Soulsby RL, Whitehouse RJS, Marten KV (2012) Prediction of time-evolving sand ripples in shelf seas. Cont Shelf Res 38:47–62

    Google Scholar 

  46. Tuijnder A (2010) Sand in short supply: modelling of bedforms, roughness and sediment transport in rivers under supply-limited conditions. Ph.D. thesis, University of Twente, Nederlands

  47. Tuijnder AP, Ribberink JS (2012) Experimental observation and modelling of roughness variation due to supply-limited sediment transport in uni-directional flow. J Hydraul Res 50(5):506–520

    Google Scholar 

  48. Tuijnder AP, Ribberink JS, Hulscher SJ (2009) An experimental study into the geometry of supply-limited dunes. Sedimentology 56(6):1713–1727

    Google Scholar 

  49. Vah M, Jarno A, Le Bot S, Marin F (2018) Experimental study on sediment supply-limited bedforms in a coastal context. In: Proceedings, 6th International Conference on Estuaries and Coasts, ICEC2018, Caen, France

  50. Van Landeghem KJ, Uehara K, Wheeler AJ, Mitchell NC, Scourse JD (2009) Post-glacial sediment dynamics in the Irish sea and sediment wave morphology: data-model comparisons. Cont Shelf Res 29(14):1723–1736

    Google Scholar 

  51. Van Rijn LC (1982) Equivalent roughness of alluvial bed. J Hydraul Div 108(10):1215–1218

    Google Scholar 

  52. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30(5):377–392

    Google Scholar 

  53. Wiberg PL, Dungan Smith J (1989) Model for calculating bed load transport of sediment. J Hydraul Eng 115(1):101–123

    Google Scholar 

  54. Wintenberger CL, Rodrigues S, Claude N, Jugé P, Bréhéret JG, Villar M (2015) Dynamics of nonmigrating mid-channel bar and superimposed dunes in a sandy-gravelly river (Loire River, France). Geomorphology 248:185–204

    Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the Normandy region (SCALE Research Network) for funding this work. The help of master student C. El Hadi for the flume experiments was greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Marin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vah, M., Jarno, A., Le Bot, S. et al. Bedload transport and bedforms migration under sand supply limitation. Environ Fluid Mech 20, 1031–1052 (2020). https://doi.org/10.1007/s10652-020-09738-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-020-09738-6

Keywords

  • Bedload transport
  • Bedforms
  • Migration velocity
  • Coastal zone
  • Sand supply limitation
  • Physical modelling