Skip to main content

Towards an understanding of the mechanisms leading to air entrainment in the skimming flow over stepped spillways

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Modern turbulence models allow for detailed numerical solutions, involving millions of data points and numerous degrees of freedom; these solutions have the potential to provide notable insights into the flows past hydraulic structures. In this paper, we present new analyses of a Detached-eddy simulation of the flow past stepped spillways in three dimensions, in order to investigate the coherent structures conducive to the phenomenon of air entrainment. The analyses focus on the spatial distributions of vorticity and velocity, as well as time series of the vorticity component in the transverse direction. A new index, \(V_n\), is proposed in order to represent the spatial location of patches of vorticity magnitude, showing by definition that time-averaged values of such index (\(\overline{V}_n\)) constitute the fraction of time in which the vorticity exceeds \(n\;{\hbox {s}}^{-1}\). When such average values are plotted for the central plane of the spillway, they strongly agree with plots of turbulent kinetic energy, conclusively connecting the vorticity patches with the turbulence intensities. The spatial evolution of velocity and vorticity components in a curved surface located at the experimental values of the thickness of the boundary layer indicates an important development of turbulence, manifested by large instantaneous values of the main flow variables. Three-dimensional plots of iso-surfaces of constant \(\overline{V}_n\) and of turbulent kinetic energy show a similar growth rate, providing further evidence of the interconnection of variables. Finally, these results suggest that steps “compensate” the decay of turbulence by generating vorticity patches in between the steps, which they then become released to the flow and reach positions close to the free surface.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Amador A (2005) Comportamiento hidráulico de los aliviaderos escalonados en presas de hormigón compactado. Ph.D. thesis, Polytechnic University of Catalonia (UPC), Barcelona, Spain (in Spanish)

  2. 2.

    Amador A, Sánchez-Juny M, Dolz J (2006) Characterization of the nonaerated flow region in a stepped spillway by PIV. J Fluids Eng 128(6):1266–1273.

    Article  Google Scholar 

  3. 3.

    Andre S (2004) High velocity aerated flows on stepped chutes with macro-roughness elements. Ph.D. thesis, EPF Lausanne, Lausanne

  4. 4.

    Anwar HO (1994) Discussion of “Self aerated flows on chutes and spillways”; by H. Chanson (February, 1993, vol. 119, no. 2). J Hydraul Eng 120(6):778–779.

    Article  Google Scholar 

  5. 5.

    Arantes EJ (2007) Caracterizaçao do escoamento sobre vertedouros em degraus via CFD. Ph.D. thesis, EESC/USP, Portugal (in Portuguese)

  6. 6.

    Bauer WJ (1954) Turbulent boundary layer on steep slopes. Trans ASCE 119:1212–1233

    Google Scholar 

  7. 7.

    Boes RM (2000) Zweiphasenstromung und energieumsetzung an grosskaskaden (two-phase flow and energy dissipation on cascades). Ph.D. thesis, VAW-ETH, Zurich, Switzerland (in German)

  8. 8.

    Bombardelli FA, Meireles I, Matos J (2011) Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environ Fluid Mech 11(3):263–288

    Article  Google Scholar 

  9. 9.

    Bung DB (2011) Developing flow in skimming flow regime on embankment stepped spillways. J Hydraul Res 49(5):639–648.

    Article  Google Scholar 

  10. 10.

    Chamani MR (1997) Skimming flow in a large model of a stepped spillway. Ph.D. thesis, University of Alberta, Canada

  11. 11.

    Chanson H (2002) The hydraulics of stepped chutes and spillways. Balkema, Lisse

    Google Scholar 

  12. 12.

    Chanson H, Bung D, Matos J (2016) Stepped spillways and cascades. In: Chanson H (ed) Energy dissipation in hydraulic structures. IAHR monograph. CRC Press, Leiden, pp 45–64

    Google Scholar 

  13. 13.

    Deshpande SS, Anumolu L, Trujillo MF (2012) Evaluating the performance of the two-phase flow solver interfoam. Comput Sci Discov 5(1):014016

    Article  Google Scholar 

  14. 14.

    Djenidi L, Elavarsan R, Antonia RA (1999) The turbulent boundary layer over transverse square cavities. J Fluid Mech 395:271–294.

    Article  Google Scholar 

  15. 15.

    Ehrenberger H (1926) Wasserbewegungen in steilen rinnen. MTG, Wien

    Google Scholar 

  16. 16.

    Elavarsan R, Pearson BR, Antonia RA (1995) Visualization of near wall region in a turbulent boundary layer over transverse square cavities with different spacing. In: Australasian fluid mechanics conference, vol 1, pp 485–488

  17. 17.

    Ervine D, Falvey H (1987) Behaviour of turbulent water jets in the armosphere and in plunge pools. Proc Inst Civ Eng 83(1):295–314.

    Article  Google Scholar 

  18. 18.

    Felder S (2013) Air–water flow properties on stepped spillways for embankment dams: aeration, energy dissipation and turbulence on uniform, non-uniform and pooled stepped chutes. Ph.D. thesis, School of Civil Engineering, University of Queensland, Australia

  19. 19.

    Gomes J (2006) Campo de pressoes: Condiçoes de incipiencia a cavitaçao em vertedouros em degraus com declividade 1v:0,75h. Ph.D. thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil (in Portuguese)

  20. 20.

    Gonzales CA (2005) An experimental study of free-surface aeration on embankment stepped chutes. Ph.D. thesis, Department of Civil Engineering, University of Queensland, Brisbane, Australia

  21. 21.

    Greenshields CJ (2011) OpenFOAM User Guide v7. CFD Direct Ltd, London

    Google Scholar 

  22. 22.

    Guenther P, Felder S, Chanson H (2013) Flow aeration, cavity processes and energy dissipation on flat and pooled stepped spillways for embankments. Environ Fluid Mech 13(5):503–525.

    Article  Google Scholar 

  23. 23.

    Halbronn G (1952) Étude de la mise en régime des écoulements sur les ouvrages á forte pente: application au probléme de l’entrainement d’air (Analysis of flows on hydraulic structures with a large slope: application to air entrainment problem). La Houille Blanche, Les Ulis

    Google Scholar 

  24. 24.

    Halbronn G (1954) Discussion to turbulent boundary layer on steep slopes. Trans ASCE 119:1234–1240

    Google Scholar 

  25. 25.

    Henderson A (2007) ParaView guide, a parallel visualization application. Kitware Inc, New York

    Google Scholar 

  26. 26.

    Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225.

    Article  Google Scholar 

  27. 27.

    Hurther D, Lemmin U (2003) Turbulent particle flux and momentum flux statistics in suspension flow. Water Resour Res.

    Article  Google Scholar 

  28. 28.

    Kara S, Kara MC, Stoesser T, Sturm TW (2015) Free-surface versus rigid-lid LES computations for bridge-abutment flow. J Hydraul Eng 141(9):04015019.

    Article  Google Scholar 

  29. 29.

    Lane EW (1939) Entrainment of air in swiftly flowing water. Civ Eng ASCE 9(2):89–91

    Google Scholar 

  30. 30.

    Lopes P, Leandro J, Carvalho RF, Bung DB (2017) Alternating skimming flow over a stepped spillway. Environ Fluid Mech 17(2):303–322.

    Article  Google Scholar 

  31. 31.

    Matos J (1999) Air entrainment and energy dissipation in flow over stepped spillways (emulsionamento de ar e dissipacao de energia do escoamento em descarregadores em degraus). Ph.D. thesis, IST, Lisbon, Portugal (in Portuguese)

  32. 32.

    Meireles I (2011) Hydraulics of stepped chutes: experimental–numerical–theoretical study. Ph.D. thesis, University of Aveiro, Portugal

  33. 33.

    Meireles I, Renna F, Matos J, Bombardelli F (2012) Skimming, nonaerated flow on stepped spillways over roller compacted concrete dams. J Hydraul Eng 138(10):870–877.

    Article  Google Scholar 

  34. 34.

    Meireles IC, Bombardelli FA, Matos J (2014) Air entrainment onset in skimming flows on steep stepped spillways: an analysis. J Hydraul Res 52(3):375–385.

    Article  Google Scholar 

  35. 35.

    Moghaddam MA (1997) The hydraulics of flow on stepped ogee-profile spillways. Ph.D. thesis, University of Ottawa, Canada

  36. 36.

    Olinger JC (2001) Contribuiçao ao estudo da distribuiçao de pressoes nos vertedouros em degraus. Ph.D. thesis, University of Sao Paulo, Sao Paulo, Brazil (in Portuguese)

  37. 37.

    Pfister M, Hager WH (2011) Self-entrainment of air on stepped spillways. Int J Multiph Flow 37(2):99–107.

    Article  Google Scholar 

  38. 38.

    Rodi W, Constantinescu G, Stoesser T (2013) Large-eddy simulation in hydraulics. CRC Press, Boca Raton.

    Book  Google Scholar 

  39. 39.

    Sanchez-Junny M (2001) Comportamiento hidráulico de los aliviaderos escalonados en presas de hormigón compactado. Análisis del campo de presiones. Ph.D. thesis, Technical University of Catalonia (UPC), Barcelona, Spain (in Spanish)

  40. 40.

    Shur ML, Spalart PR, Strelets MK, Travin AK (2008) A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int J Heat Fluid Flow 29(6):1638–1649.

    Article  Google Scholar 

  41. 41.

    Spalart P, Allmaras S (1994) A one-equation turbulence model for aerodynamic flows. In: 30th Aerospace sciences meeting and exhibit, aerospace sciences meetings.

  42. 42.

    Spalart PR (2001) Young-person’s guide to detached-eddy simulation grids. NASA/CR-2001-211032, NAS 1.26:211032

  43. 43.

    Toombes L (2002) Experimental study of air–water flow properties on low-gradient stepped cascades. Ph.D. thesis, Department of Civil Engineering, University of Queensland, Australia

  44. 44.

    Toro JP, Bombardelli FA, Paik J (2017) Detached eddy simulation of the nonaerated skimming flow over a stepped spillway. J Hydraul Eng 143(9):04017032.

    Article  Google Scholar 

  45. 45.

    Toro JP, Bombardelli FA, Paik J, Meireles I, Amador A (2016) Characterization of turbulence statistics on the non-aerated skimming flow over stepped spillways: a numerical study. Environ Fluid Mech 16(6):1195–1221.

    Article  Google Scholar 

  46. 46.

    Valero D, Bung DB (2018) Reformulating self-aeration in hydraulic structures: turbulent growth of free surface perturbations leading to air entrainment. Int J Multiph Flow 100:127–142.

    Article  Google Scholar 

  47. 47.

    Volkart P (1980) The mechanism of air bubble entrainment in self-aerated flow. Int J Multiph Flow 6(5):411–423.

    Article  Google Scholar 

  48. 48.

    Ward J (2002) Hydraulic design of stepped spillways. Ph.D. thesis, Colorado State University

  49. 49.

    Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12(6):620–631.

    Article  Google Scholar 

  50. 50.

    Zhang G, Valero D, Bung D, Chanson H (2018) On the estimation of free-surface turbulence using ultrasonic sensors. Flow Meas Instrum 60:171–184.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Fabián A. Bombardelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zabaleta, F., Bombardelli, F.A. & Toro, J.P. Towards an understanding of the mechanisms leading to air entrainment in the skimming flow over stepped spillways. Environ Fluid Mech 20, 375–392 (2020).

Download citation


  • Stepped spillway
  • Non-aerated flow
  • Skimming flow
  • Detached eddy simulation (DES)
  • Particle image velocimetry (PIV)
  • Vorticity
  • Turbulent kinetic energy