Skip to main content
Log in

Obtaining turbulence statistics of thermally driven anabatic flow by sonic-hot-film combo anemometer

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Achieving a better understanding of atmospheric boundary layer flows, and of slope flows in particular, is of paramount importance for the research of climate processes and production of accurate weather forecasts. We addressed the need for high resolution statistics that describe the turbulence of thermally driven anabatic (upslope) flows by the implementation of a novel sonic-hot-film anemometer, the combo probe. A field experiment was staged to obtain continuous 8-day measurements of a thermally driven anabatic flow diurnal cycle on a moderate slope by a single combo probe mounted atop a 2 m high mast. Variations of the mean and fluctuating upslope velocity field components and temperature exhibit a strong correlation of the developing flow with the diurnal solar heating cycle. The provided detailed analysis of turbulence statistics includes characteristic length scales and spectra of velocity fluctuations almost up to the Kolmogorov scale. Identification of spectral shape similarity led to the introduction of a suitable normalization and comparison of the results to a theoretical model. Additionally, empirical fits of several parameters are produced and discussed with respect to variations of thermal forcing that were derived in terms of bulk temperature differences and buoyancy fluxes up the slope. The main outcomes are spectra resolved down to small scales and turbulence statistics made available for numerical simulations and future studies with slow instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ellis AW, Hilderbrandt ML, Thomas WM, Fernando HJS (2000) Analysis of the climatic mechanism contributing to the summertime transport of lower atmospheric ozone across metropolitan Phoenix, Arizona, USA. Clim Res 15:13–31. https://doi.org/10.3354/cr015013

    Article  Google Scholar 

  2. Fernando HJS, Lee SM, Anderson J et al (2001) Urban fluid mechanics: air circulation and contaminant dispersion in cities. Environ Fluid Mech 1:107–164. https://doi.org/10.1023/A:1011504001479

    Article  Google Scholar 

  3. Faller AJ (1965) Large eddies in the atmospheric boundary layer and their possible role in the formation of cloud rows. J Atmos Sci 22:176–184

    Article  Google Scholar 

  4. Otarola S, Dimitrova R, Leo L, et al (2016) On the role of the Andes on weather patterns and related environmental hazards in Chile. AMS

  5. Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, New York

    Google Scholar 

  6. Princevac M, Fernando HJS (2007) A criterion for the generation of turbulent anabatic flows. Phys Fluids 19:1051021–1051027. https://doi.org/10.1063/1.2775932

    Article  Google Scholar 

  7. Chow FK, De Wekker SFJ, Snyder (2015) Mountain weather and research forecasting. https://doi.org/10.1017/cbo9781107415324.004

  8. Oldroyd HJ, Pardyjak ER, Higgins CW, Parlange MB (2016) Buoyant turbulent kinetic energy production in steep-slope katabatic flow. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-016-0184-3

  9. Monti P, Fernando HJS, Princevac M et al (2002) Observations of flow and turbulence in the nocturnal boundary layer over a slope. J Atmos Sci 59:2513–2534. https://doi.org/10.1175/1520-0469(2002)059%3c2513:OOFATI%3e2.0.CO;2

    Article  Google Scholar 

  10. Demko JC, Geerts B, Miao Q, Zehnder JA (2009) Boundary layer energy transport and cumulus development over a heated mountain: an observational study. Am Meteorol Soc Mon Weather Rev 137:447–468. https://doi.org/10.1175/2008MWR2467.1

    Article  Google Scholar 

  11. Fernando HJS (2010) Fluid dynamics of urban atmospheres in complex terrain. Annu Rev Fluid Mech 42:365–389. https://doi.org/10.1146/annurev-fluid-121108-145459

    Article  Google Scholar 

  12. Choi W, Faloona IC, McKay M et al (2011) Estimating the atmospheric boundary layer height over sloped, forested terrain from surface spectral analysis during BEARPEX. Atmos Chem Phys 11:6837–6853. https://doi.org/10.5194/acp-11-6837-2011

    Article  Google Scholar 

  13. Fernando HJS, Pardyjak ER, Di Sabatino S, et al (2015) The materhorn : unraveling the intricacies of mountain weather. Bull Am Meteorol Soc. https://doi.org/10.1175/bams-d-13-00131.1

  14. Hunt JCR, Fernando HJS, Princevac M (2003) Unsteady thermally driven flows on gentle slopes. J Atmos Sci 60:2169–2182. https://doi.org/10.1175/1520-0469(2003)060%3c2169:UTDFOG%3e2.0.CO;2

    Article  Google Scholar 

  15. Reuten C, Steyn DG, Allen SE (2007) Water tank studies of atmospheric boundary layer structure and air pollution transport in upslope flow systems. J Geophys Res Atmos 112:1–17. https://doi.org/10.1029/2006JD008045

    Article  Google Scholar 

  16. Reuten C (2008) Upslope flow systems: scaling, structure, and kinematics in tank and atmosphere. VDM Verlag Dr. Müller, Saarbrücken

    Google Scholar 

  17. Moroni M, Giorgilli M, Cenedese A (2014) Experimental investigation of slope flows via image analysis techniques. J Atmos Solar-Terr Phys 108:17–33. https://doi.org/10.1016/j.jastp.2013.12.008

    Article  Google Scholar 

  18. Schumann U (1990) Large-eddy simulation of the up-slope boundary layer. Q J R Meteorol Soc 116:637–670. https://doi.org/10.1256/smsqj.49306

    Article  Google Scholar 

  19. Noppel H, Fiedler F (2002) Mesoscale heat transport over complex terrain by slope winds- a conceptual model and numerical simulations. Boundary-Layer Meteorol 104(104):73–97

    Article  Google Scholar 

  20. Rampanelli G, Zardi D, Rotunno R (2004) Mechanisms of up-valley winds. J Atmos Sci 61:3097–3111. https://doi.org/10.1175/JAS-3354.1

    Article  Google Scholar 

  21. Fedorovich E, Shapiro A (2009) Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophys 57:981–1010. https://doi.org/10.2478/s11600-009-0027-4

    Article  Google Scholar 

  22. Serafin S, Zardi D (2010) Structure of the atmospheric boundary layer in the vicinity of a developing upslope flow system: a numerical model study. J Atmos Sci 67:1171–1185. https://doi.org/10.1175/2009JAS3231.1

    Article  Google Scholar 

  23. Geerts B, Raymond DJ, Grubišić V, Davis CA, Barth MC, Detwiler A, Klein PM, Lee W, Markowski PM, Mullendore GL, Moore JA (2018) Recommendations for in situ and remote sensing capabilities in atmospheric convection and turbulence. Am Meteorol Soc. https://doi.org/10.1175/bams-d-17-0310.1

  24. Pope SB (2000) Turbulent flows. Cambridge University Press, New York

    Book  Google Scholar 

  25. Hayashi T (1992) Gust and downward momentum transport in the atmospheric surface layer. Boundary-Layer Meteorol 58:33–49

    Article  Google Scholar 

  26. McNaughton K, Laubach J (2000) Power spectra and cospectra for wind and scalars in a disturbed surface layer at the base of an advective inversion. Boundary-layer Meteorol 96:143–185. https://doi.org/10.1023/A:1002477120507

    Article  Google Scholar 

  27. Lothon M, Lenschow DH, Mayor SD (2009) Doppler lidar measurements of vertical velocity spectra in the convective planetary boundary layer. Boundary-Layer Meteorol 132:205–226. https://doi.org/10.1007/s10546-009-9398-y

    Article  Google Scholar 

  28. Krishnamurthy R, Calhoun R, Billings B, Doyle J (2011) Wind turbulence estimates in a valley by coherent Doppler lidar. Meteorol Appl 18:361–371. https://doi.org/10.1002/met.263

    Article  Google Scholar 

  29. Potter H, Graber HC, Williams NJ et al (2015) In situ measurements of momentum fluxes in typhoons. J Atmos Sci 72:104–118. https://doi.org/10.1175/JAS-D-14-0025.1

    Article  Google Scholar 

  30. Oncley SP, Friehe CA, Larue JC et al (1996) Surface layer fluxes profiles and turbulence measurements over uniform terrain under near neutral conditions. J Atmos Sci 53:1029–1044

    Article  Google Scholar 

  31. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Book. https://doi.org/10.1016/0021-9169(95)90002-0

  32. Kit E, Cherkassky A, Sant T, Fernando HJS (2010) In situ calibration of hot-film probes using a collocated sonic anemometer: implementation of a neural network. J Atmos Ocean Technol 27:23–41. https://doi.org/10.1175/2009JTECHA1320.1

    Article  Google Scholar 

  33. Vitkin L, Liberzon D, Grits B, Kit E (2014) Study of in situ calibration performance of co-located multi-sensor hot-film and sonic anemometers using a ‘virtual probe’ algorithm. Meas Sci Technol 25:75801. https://doi.org/10.1088/0957-0233/25/7/075801

    Article  Google Scholar 

  34. Kit E, Liberzon D (2016) 3D-calibration of three- and four-sensor hot-film probes based on collocated sonic using neural networks. Meas Sci Technol 27:95901. https://doi.org/10.1088/0957-0233/27/9/095901

    Article  Google Scholar 

  35. Kit E, Hocut CM, Liberzon D, Fernando HJS (2017) Fine-scale turbulent bursts in stable atmospheric boundary layer in complex terrain. J Fluid Mech 833:745–772. https://doi.org/10.1017/jfm.2017.717

    Article  Google Scholar 

  36. Turnipseed AA, Anderson DE, Burns S et al (2004) Airflows and turbulent flux measurements in mountainous terrain: Part 2: Mesoscale effects. Agric For Meteorol 125:187–205. https://doi.org/10.1016/j.agrformet.2004.04.007

    Article  Google Scholar 

  37. Hocut CM, Liberzon D, Fernando HJS (2015) Separation of upslope flow over a uniform slope. J Fluid Mech 775:266–287. https://doi.org/10.1017/jfm.2015.298

    Article  Google Scholar 

  38. Stull RB (1988) An introduction to boundary layer meteorology. Book. https://doi.org/10.1007/978-94-009-3027-8

  39. Whiteman CD (1990) Observations of thermally developed wind systems in mountainous terrain. Chapter 2. In: Atmospheric processes over complex terrain, Boston, pp 5–42

  40. Saddoughi SG, Veeravalli SV (1994) Local isotropy in turbulent boundary layers at high Reynolds number. J Fluid Mech 268:333–372. https://doi.org/10.1017/s0022112094001370

    Article  Google Scholar 

  41. Falkovich G (1994) Bottleneck phenomenon in developed turbulence. Phys Fluids 6:1411–1414. https://doi.org/10.1063/1.868255

    Article  Google Scholar 

  42. Tatarskii VI (2005) Use of the 4/5 Kolmogorov equation for describing some characteristics of fully developed turbulence. Phys Fluids 17:03511001–03511012. https://doi.org/10.1063/1.1858531

    Article  Google Scholar 

  43. Kim H, Kline S, Reynolds W (1971) The production of turbulence near a smooth wall in a turbulent boundary layer. J Fluid Mech 50:133–160

    Article  Google Scholar 

  44. Davidson PA (2004) Turbulence an introduction for scientists and engineers. Oxford University Press, New York

    Google Scholar 

  45. Brethouwer G, Billant P, Lindborg E, Chomaz J-M (2007) Scaling analysis and simulation of strongly stratified turbulent flows. J Fluid Mech 585:343–368. https://doi.org/10.1017/S0022112007006854

    Article  Google Scholar 

  46. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc Acad Sci USSR Geochem Sect 30:299–303. https://doi.org/10.1098/rspa.1991.0075

    Article  Google Scholar 

  47. Dubovikov M, Tatarskii VI (1987) Calculation of the asymptotic form of the spectrum of locally isotropic turbulence in the viscous range. 66:1136–1141

  48. Sreenivasan KR, Antonia RA (1997) The phenomenology of small-scale turbulence. Annu Rev Fluid Mech 29:435–472. https://doi.org/10.1146/annurev.fluid.29.1.435

    Article  Google Scholar 

  49. Gibson CH, Stegen GR, Williams RB (1970) Statistics of the fine structure of turbulent velocity and temperature fields measured at high Reynolds number. J Fluid Mech 41:153–167. https://doi.org/10.1017/S0022112070000551

    Article  Google Scholar 

  50. Wyngaard JC, Tennekes H (1970) Measurements of the small-scale structure of turbulence at moderate Reynolds numbers. Phys Fluids 13:1962–1969. https://doi.org/10.1063/1.1693192

    Article  Google Scholar 

  51. Antonia R, Satyaprakash B, Chambers A (1981) Reynolds number dependence of high-order moments of the streamwise turbulent velocity derivative. Bound Layer Meteorol 21:159–171

    Article  Google Scholar 

  52. Antonia R, Satyaprakash B, Hussain A (1982) Statistics of fine-scale velocity in turbulent plane and circular jets. J Fluid Mech 119:55–89. https://doi.org/10.1017/S0022112082001268

    Article  Google Scholar 

  53. Jiménez J, Wray AA, Saffman PG, Rogallo RS (1993) The structure of intense vorticity in isotropic turbulence. J Fluid Mech 255:65–90. https://doi.org/10.1017/S0022112093002393

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this study by the United States–Israel Binational Science Foundation under Grant 2014075. Our greatest thanks go to Richter-Baruch family for hosting us at their property with great hospitality and providing all possible support. We also thank Prof. H.J.S. Fernando of the University of Notre Dame and Prof. David Broday of the Technion for lending us part of the equipment used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roni Hilel Goldshmid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilel Goldshmid, R., Liberzon, D. Obtaining turbulence statistics of thermally driven anabatic flow by sonic-hot-film combo anemometer. Environ Fluid Mech 20, 1221–1249 (2020). https://doi.org/10.1007/s10652-018-9649-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-018-9649-x

Keywords

Navigation