Advertisement

Environmental Fluid Mechanics

, Volume 19, Issue 3, pp 667–698 | Cite as

Hydrodynamics of a periodically wind-forced small and narrow stratified basin: a large-eddy simulation experiment

  • Hugo N. UlloaEmail author
  • George Constantinescu
  • Kyoungsik Chang
  • Daniel Horna-Munoz
  • Oscar Sepúlveda Steiner
  • Damien Bouffard
  • Alfred Wüest
Original Article
  • 420 Downloads

Abstract

We report novel results of a numerical experiment designed for examining the basin-scale hydrodynamics that control the mass, momentum, and energy distribution in a daily wind-forced, small thermally-stratified basin. For this purpose, the 3-D Boussinesq equations of motion were numerically solved using large-eddy simulation (LES) in a simplified (trapezoidal) stratified basin to compute the flow driven by a periodic wind shear stress working at the free surface along the principal axis. The domain and flow parameters of the LES experiment were chosen based on the conditions observed during summer in Lake Alpnach, Switzerland. We examine the diurnal circulation once the flow becomes quasi-periodic. First, the LES results show good agreement with available observations of internal seiching, boundary layer currents, vertical distribution of kinetic energy dissipation and effective diffusivity. Second, we investigated the wind-driven baroclinic cross-shore exchange. Results reveal that a near-resonant regime, arising from the coupling of the periodic wind-forcing (\(T=24\) h) and the V2H1 basin-scale internal seiche (\(T_{{\mathrm{V2H1}}}\approx 24\) h), leads to an active cross-shore circulation that can fully renew near-bottom waters at diurnal scale. Finally, we estimated the bulk mixing efficiency, \(\varGamma\), of relevant zones, finding high spatial variability both for the turbulence intensity and the rate of mixing (\(10^{-3}\le \varGamma \le 10^{-1}\)). In particular, significant temporal variability along the slopes of the basin was controlled by the periodic along-slope currents resulting from the V2H1 internal seiche.

Keywords

Large-eddy simulation Basin-scale circulation Resonance regime Cross-shore exchange 

Notes

Acknowledgements

This work has been developed during the sabbatical leave of George Constantinescu at EPFL. We acknowledge the financial contribution by the ENAC-EPFL Visiting Professor Program (Grant Number CF 0233). Discussions with Kraig B. Winters and Leo Maas on BBL dynamics and resonance regimes in stratified environments are gratefully acknowledged. We thank Javier Vidal for providing the Münnich’s model that resolve the normal modes in an arbitrary 2-D stratified basin. We also thank Tomás Trewhela for his useful observations and criticisms on this work. The manuscript also benefited from feedback from two anonymous reviewers. Additional information on the model can be obtained by contacting G. Constantinescu at sconstan@engineering.uiowa.edu.

References

  1. 1.
    Antenucci JP, Imberger J (2001) Energetics of long internal gravity waves in large lakes. Limnol Oceanogr 46(7):1760–1773.  https://doi.org/10.4319/lo.2001.46.7.1760 CrossRefGoogle Scholar
  2. 2.
    Appt J, Imberger J, Kobus H (2004) Basin-scale motion in stratified upper Lake constance. Limnol Oceanogr 4(4):919–933.  https://doi.org/10.4319/lo.2004.49.4.0919 CrossRefGoogle Scholar
  3. 3.
    Becherer JK, Umlauf L (2011) Boundary mixing in lakes: 1. Modeling the effect of shear-induced convection. J Geophys Res 116:C10017.  https://doi.org/10.1029/2011JC007119 CrossRefGoogle Scholar
  4. 4.
    Bendat J, Piersol A (2000) Random data. Wiley, New York.  https://doi.org/10.1002/9781118032428 Google Scholar
  5. 5.
    Boegman L, Ivey GN, Imberger J (2005) The degeneration of internal waves in lakes with sloping topography. Limnol Oceanogr 50(5):1620–1637.  https://doi.org/10.4319/lo.2005.50.5.1620 CrossRefGoogle Scholar
  6. 6.
    Boehrer B, Schultze M (2008) Stratification of lakes. Rev Geophys 46(2):RG2005.  https://doi.org/10.1029/2006RG000210 CrossRefGoogle Scholar
  7. 7.
    Borden Z, Meiburg E, Constantinescu G (2012) Internal bores: an improved model via a detailed analysis of the energy budget. J Fluid Mech 703:279–314.  https://doi.org/10.1017/jfm.2012.213 CrossRefGoogle Scholar
  8. 8.
    Bouffard D, Boegman L (2013) A diapycnal diffusivity model for stratified environmental flows. Dyn Atmos Oceans 61–62:14–34.  https://doi.org/10.1016/j.dynatmoce.2013.02.002 CrossRefGoogle Scholar
  9. 9.
    Bouffard D, Boegman L, Rao YR (2012) Poincaré wave-induced mixing in a large lake. Limnol Oceanogr 57(4):1201–1216.  https://doi.org/10.4319/lo.2012.57.4.1201 CrossRefGoogle Scholar
  10. 10.
    Chang K, Constantinescu G, Park SO (2006) Analysis of the flow and mass transfer processes for the incompressible flow past an open cavity with a laminar and a fully turbulent incoming boundary layer. J Fluid Mech 561:113–145.  https://doi.org/10.1017/S0022112006000735 CrossRefGoogle Scholar
  11. 11.
    Chang K, Constantinescu G, Park SO (2007) Purging of a neutrally buoyant or a dense miscible contaminant from a rectangular cavity. II: case of an incoming fully turbulent overflow. J Hydraul Eng 133(4):373–385.  https://doi.org/10.1061/(ASCE)0733-9429(2007)133:4(373) CrossRefGoogle Scholar
  12. 12.
    Csanady GT (1982) On the structure of transient upwelling events. J Phys Oceanogr 12(1):84–96. https://doi.org/10.1175/1520-0485(1982)012\(<\)0084:OTSOTU\(>\)2.0.CO;2Google Scholar
  13. 13.
    de la Fuente A, Shimizu K, Niño Y, Imberger J (2010) Nonlinear and weakly nonhydrostatic inviscid evolution of internal gravitational basin-scale waves in a large, deep lake: lake constance. J Geophys Res Ocean.  https://doi.org/10.1029/2009JC005839
  14. 14.
    Dittko KA, Kirkpatrick MP, Armfield SW (2013) Large eddy simulation of complex sidearms subject to solar radiation and surface cooling. Water Res 47(14):4918–4927.  https://doi.org/10.1016/j.watres.2013.05.045 CrossRefGoogle Scholar
  15. 15.
    Dorostkar A, Boegman L (2012) Internal hydraulic jumps in a long narrow lake. Limnol Oceanogr 58(1):153–172.  https://doi.org/10.4319/lo.2013.58.1.0153 CrossRefGoogle Scholar
  16. 16.
    Dorostkar A, Boegman L, Pollard A (2017) Three-dimensional simulation of high-frequency nonlinear internal wave dynamics in Cayuga Lake. J Geophys Res Oceans 122(3):2183–2204.  https://doi.org/10.1002/2016JC011862 CrossRefGoogle Scholar
  17. 17.
    Farrow DE (2013) Periodically driven circulation near the shore of a lake. Environ Fluid Mech 13(3):243–255.  https://doi.org/10.1007/s10652-012-9261-4 CrossRefGoogle Scholar
  18. 18.
    Fricker PD, Nepf HM (2000) Bathymetry, stratification, and internal seiche structure. J Geophys Res 105(C6):14237–14251.  https://doi.org/10.1029/2000JC900060 CrossRefGoogle Scholar
  19. 19.
    Gloor M, Wüest A, Imboden DM (2000) Dynamics of mixed bottom boundary layers and its implications for diapycnal transport in a stratified, natural water basin. J Geophys Res Oceans 105(C4):8629–8646.  https://doi.org/10.1029/1999JC900303 CrossRefGoogle Scholar
  20. 20.
    Goudsmit GH, Peeters F, Gloor M, Wüest A (1997) Boundary versus internal diapycnal mixing in stratified natural waters. J Geophys Res Oceans 102(C13):27903–27914.  https://doi.org/10.1029/97JC01861 CrossRefGoogle Scholar
  21. 21.
    Henderson SM (2016) Turbulent production in an internal wave bottom boundary layer maintained by a vertically propagating seiche. J Geophys Res Oceans 121(4):2481–2498.  https://doi.org/10.1002/2015JC011071 CrossRefGoogle Scholar
  22. 22.
    Hodges BR, Imberger J, Saggio A, Winters KB (2000) Modeling basin-scale internal waves in a stratified lake. Limnol Oceanogr 45(7):1603–1620.  https://doi.org/10.4319/lo.2000.45.7.1603 CrossRefGoogle Scholar
  23. 23.
    Hodges BR, Laval B, Wadzuk BM (2006) Numerical error assessment and a temporal horizon for internal waves in a hydrostatic model. Ocean Modell 13(1):44–64.  https://doi.org/10.1016/j.ocemod.2005.09.005 CrossRefGoogle Scholar
  24. 24.
    Hondzo M, Haider Z (2004) Boundary mixing in a small stratified lake. Water Resour Res.  https://doi.org/10.1029/2002WR001851
  25. 25.
    Howard LN (1961) Note on a paper of John W Miles. J Fluid Mech 10(04):509–512.  https://doi.org/10.1017/S0022112061000317 CrossRefGoogle Scholar
  26. 26.
    Hutter K, Salvadè G, Spinedi C, Zamboni F, Bäuerle E (1991) Large scale water movements in lakes. Aquat Sci 53(2):100–135.  https://doi.org/10.1007/BF00877057 CrossRefGoogle Scholar
  27. 27.
    Ivey GN, Winters KB, Koseff JR (2008) Density stratification, turbulence, but how much mixing? Annu Rev Fluid Mech 40(1):169–84.  https://doi.org/10.1146/annurev.fluid.39.050905.110314 CrossRefGoogle Scholar
  28. 28.
    Keylock C, Hardy R, Parsons D, Ferguson R, Lane S, Richards K (2005) The theoretical foundations and potential for large-eddy simulation (LES) in fluvial geomorphic and sedimentological research. Earth Sci Rev 71(3–4):271–304.  https://doi.org/10.1016/j.earscirev.2005.03.001 CrossRefGoogle Scholar
  29. 29.
    Keylock C, Constantinescu G, Hardy R (2012) The application of computational fluid dynamics to natural river channels: eddy resolving versus mean flow approaches. Geomorphology 179:1–20.  https://doi.org/10.1016/j.geomorph.2012.09.006 CrossRefGoogle Scholar
  30. 30.
    Lorke A (2007) Boundary mixing in the thermocline of a large lake. J Geophys Res 112:C09019.  https://doi.org/10.1029/2006JC004008 CrossRefGoogle Scholar
  31. 31.
    Lorke A, Umlauf L, Jonas T, Wüest A (2002) Dynamics of turbulence in low-speed oscillating bottom-boundary layers of stratified basins. Environ Fluid Mech 2(4):291–313.  https://doi.org/10.1023/A:1020450729821 CrossRefGoogle Scholar
  32. 32.
    Lorke A, Peeters F, Wüest A (2005) Shear-induced convective mixing in bottom boundary layers on slopes. Limnol Oceanogr 50(5):1612–1619.  https://doi.org/10.4319/lo.2005.50.5.1612 CrossRefGoogle Scholar
  33. 33.
    Lorrai C, Umlauf L, Becherer JK, Lorke A, Wüest A (2011) Boundary mixing in lakes: 2. Combined effects of shear- and convectively induced turbulence on basin-scale mixing. J Geophys Res 116:C10018.  https://doi.org/10.1029/2011JC007121 CrossRefGoogle Scholar
  34. 34.
    Maas LRM, Lam FPA (1995) Geometric focusing of internal waves. J Fluid Mech 300:1–41.  https://doi.org/10.1017/S0022112095003582 CrossRefGoogle Scholar
  35. 35.
    Mahesh K, Constantinescu G, Moin P (2004) A numerical method for large-eddy simulation in complex geometries. J Comput Phys 197(1):215–240.  https://doi.org/10.1016/j.jcp.2003.11.031 CrossRefGoogle Scholar
  36. 36.
    Mashayek A, Salehipour H, Bouffard D, Caulfield CP, Ferrari R, Nikurashin M, Peltier WR, Smyth WD (2017) Efficiency of turbulent mixing in the abyssal ocean circulation. Geophys Res Lett 44(12):6296–6306.  https://doi.org/10.1002/2016GL072452 CrossRefGoogle Scholar
  37. 37.
    Miles JW (1961) On the stability of heterogeneous shear flows. J Fluid Mech 10(04):496–508.  https://doi.org/10.1017/S0022112061000305 CrossRefGoogle Scholar
  38. 38.
    Monismith SG (1985) Wind-forced motions in stratified lakes and their effect on mixed-layer shear. Limnol Oceanogr 30(4):771–783.  https://doi.org/10.4319/lo.1985.30.4.0771 CrossRefGoogle Scholar
  39. 39.
    Monismith SG, Imberger J, Morison ML (1990) Convective motions in the sidearm of a small reservoir. Limnol Oceanogr 35(8):1676–1702.  https://doi.org/10.4319/lo.1990.35.8.1676 CrossRefGoogle Scholar
  40. 40.
    Monsen NE, Cloern JE, Lucas LV, Monismith SG (2002) A comment on the use of flushing time, residence time, and age as transport time scales. Limnol Oceanogr 47(5):1545–1553.  https://doi.org/10.4319/lo.2002.47.5.1545 CrossRefGoogle Scholar
  41. 41.
    Münnich M, Wüest A, Imboden DM (1992) Observations of the second vertical mode of the internal seiche in an alpine lake. Limnol Oceanogr 37(8):1705–1719.  https://doi.org/10.4319/lo.1992.37.8.1705 CrossRefGoogle Scholar
  42. 42.
    Ooi SK, Constantinescu G, Weber L (2007) A numerical study of intrusive compositional gravity currents. Phys Fluids 19(7):076602.  https://doi.org/10.1063/1.2750672 CrossRefGoogle Scholar
  43. 43.
    Ooi SK, Constantinescu G, Weber L (2009) Numerical simulations of lock-exchange compositional gravity current. J Fluid Mech 635:361–388.  https://doi.org/10.1017/S0022112009007599 CrossRefGoogle Scholar
  44. 44.
    Osborn TR (1980) Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10(1):83–89.  https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2 CrossRefGoogle Scholar
  45. 45.
    Petronio A, Roman F, Nasello C, Armenio V (2013) Large eddy simulation model for wind-driven sea circulation in coastal areas. Nonlinear Process Geophys 20(6):1095–1112.  https://doi.org/10.5194/npg-20-1095-2013 CrossRefGoogle Scholar
  46. 46.
    Pham HT, Sarkar S (2010) Transport and mixing of density in a continuously stratified shear layer. J Turbul 11:N24.  https://doi.org/10.1080/14685248.2010.493560 CrossRefGoogle Scholar
  47. 47.
    Pierce CD, Moin P (2001) Progress-variable approach for large-eddy simulation of turbulent combustion. PhD thesis, Mechanical Engineering Department Report, TF-80, Standford UniversityGoogle Scholar
  48. 48.
    Pierce CD, Moin P (2004) Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J Fluid Mech 504:73–97.  https://doi.org/10.1017/S0022112004008213 CrossRefGoogle Scholar
  49. 49.
    Piomelli U (2014) Large eddy simulations in 2030 and beyond. Philos Trans R Soc A 372(2022):20130320.  https://doi.org/10.1098/rsta.2013.0320 CrossRefGoogle Scholar
  50. 50.
    Piomelli U, Chasnov JR (1996) Large-eddy simulations: theory and applications. Springer, Netherlands.  https://doi.org/10.1007/978-94-015-8666-5_7 Google Scholar
  51. 51.
    Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511840531 CrossRefGoogle Scholar
  52. 52.
    Preusse M, Peeters F, Lorke A (2010) Internal waves and the generation of turbulence in the thermocline of a large lake. Limnol Oceanogr 55(6):2353–2365.  https://doi.org/10.4319/lo.2010.55.6.2353 CrossRefGoogle Scholar
  53. 53.
    Rodi CGSTW (2013) Large-eddy simulation in hydraulics. CRC Press, LondonCrossRefGoogle Scholar
  54. 54.
    Roman F, Stipcich G, Armenio V, Inghilesi R, Corsini S (2010) Large eddy simulation of mixing in coastal areas. Int J Heat Fluid Flow 31(3):327–341.  https://doi.org/10.1016/j.ijheatfluidflow.2010.02.006 CrossRefGoogle Scholar
  55. 55.
    Rozas C, de la Fuente A, Ulloa H, Davies P, Niño Y (2014) Quantifying the effect of wind on internal wave resonance in Lake Villarrica, Chile. Environ Fluid Mech 14(4):849–871.  https://doi.org/10.1007/s10652-013-9329-9 Google Scholar
  56. 56.
    Santo MA, Toffolon M, Zanier G, Giovannini L, Armenio V (2017) Large eddy simulation (LES) of wind-driven circulation in a peri-alpine lake: detection of turbulent structures and implications of a complex surrounding orography. J Geophys Res Ocean 122(6):4704–4722.  https://doi.org/10.1002/2016JC012284 CrossRefGoogle Scholar
  57. 57.
    Scalo C, Boegman L, Piomelli U (2013) Large-eddy simulation and low-order modeling of sediment-oxygen uptake in a transitional oscillatory flow. J Geophys Res Oceans 118(4):1926–1939.  https://doi.org/10.1002/jgrc.20113 CrossRefGoogle Scholar
  58. 58.
    Shih LH, Koseff JR, Ivey GN, Ferziger JH (2005) Parameterization of turbulent fluxes and scales using homogeneous shared stably stratified turbulence simulations. J Fluid Mech 525:193–214.  https://doi.org/10.1017/S0022112004002587 CrossRefGoogle Scholar
  59. 59.
    Shintani T, de la Fuente A, Niño Y, Imberger J (2010) Generalizations of the Wedderburn number: parameterizing upwelling in stratified lakes. Limnol Oceanogr 55(3):1377–1389.  https://doi.org/10.4319/lo.2010.55.3.1377 CrossRefGoogle Scholar
  60. 60.
    Simpson JH, Wiles PJ, Lincoln BJ (2011) Internal seiche modes and bottom boundary-layer dissipation in a temperate lake from acoustic measurements. Limnol Oceanogr 56(5):1893–1906.  https://doi.org/10.4319/lo.2011.56.5.1893 CrossRefGoogle Scholar
  61. 61.
    Sommer T, Danza F, Berg J, Sengupta A, Constantinescu G, Tokyay T, Bürgmann H, Dressler Y, Sepúlveda Steiner O, Schubert CJ, Tonolla M, Wüest A (2017) Bacteria-induced mixing in natural waters. Geophys Res Lett 44(18):9424–9432.  https://doi.org/10.1002/2017GL074868 CrossRefGoogle Scholar
  62. 62.
    Spigel RH, Imberger J (1980) The classification of mixed-layer dynamics of lakes of small to medium size. J Phys Oceanogr 10(7):1104–1121.  https://doi.org/10.1175/1520-0485(1980)010<1104:TCOMLD>2.0.CO;2 CrossRefGoogle Scholar
  63. 63.
    Steenhauer K, Tokyay T, Constantinescu G (2017) Dynamics and structure of planar gravity currents propagating down an inclined surface. Phys Fluids 29(3):036604.  https://doi.org/10.1063/1.4979063 CrossRefGoogle Scholar
  64. 64.
    Taylor JR, Sarkar S (2008) Stratification effects in a bottom Ekman layer. J Phys Oceanogr 38(11):2535–2555.  https://doi.org/10.1175/2008JPO3942.1 CrossRefGoogle Scholar
  65. 65.
    Tokyay T, Constantinescu G (2015) The effects of a submerged non-erodible triangular obstacle on bottom propagating gravity currents. Phys Fluids 27(5):056601.  https://doi.org/10.1063/1.4919384 CrossRefGoogle Scholar
  66. 66.
    Tokyay T, Constantinescu G, Meiburg E (2011) Lock-exchange gravity currents with a high volume of release propagating over a periodic array of obstacles. J Fluid Mech 672:570–605.  https://doi.org/10.1017/S0022112010006312 CrossRefGoogle Scholar
  67. 67.
    Tokyay T, Constantinescu G, Meiburg E (2012) Tail structure and bed friction velocity distribution of gravity currents propagating over an array of obstacles. J Fluid Mech 694:252–291.  https://doi.org/10.1017/jfm.2011.542 CrossRefGoogle Scholar
  68. 68.
    Tokyay T, Constantinescu G, Meiburg E (2014) Lock-exchange gravity currents with a low volume of release propagating over an array of obstacles. J Geophys Res Oceans 119(5):2752–2768.  https://doi.org/10.1002/2013JC009721 CrossRefGoogle Scholar
  69. 69.
    Ulloa HN, Winters KB, de la Fuente A, Niño Y (2015) Degeneration of internal Kelvin waves in a continuous two-layer stratification. J Fluid Mech 777:68–96.  https://doi.org/10.1017/jfm.2015.311 CrossRefGoogle Scholar
  70. 70.
    Ulloa HN, Davis KA, Monismith SG, Pawlak G (2018) Temporal variability in thermally-driven cross-shore exchange: the role of semidiurnal tides. J Phys Oceanogr 48(7):1513–1531.  https://doi.org/10.1175/JPO-D-17-0257.1 CrossRefGoogle Scholar
  71. 71.
    Valipour R, Bouffard D, Boegman L (2015) Parameterization of bottom mixed layer and logarithmic layer heights in central Lake Erie. J Great Lakes Res 41(3):707–718.  https://doi.org/10.1016/j.jglr.2015.06.010 CrossRefGoogle Scholar
  72. 72.
    Valipour R, Boegman L, Bouffard D, Rao YR (2017) Sediment resuspension mechanisms and their contributions to high-turbidity events in a large lake. Limnol Oceanogr 62(3):1045–1065.  https://doi.org/10.1002/lno.10485 CrossRefGoogle Scholar
  73. 73.
    Vidal J, Casamitjana X, Colomer J, Serra T (2005) The internal wave field in Sau reservoir: observation and modeling of a third vertical mode. Limnol Oceanogr 50(4):1326–1333.  https://doi.org/10.4319/lo.2005.50.4.1326 CrossRefGoogle Scholar
  74. 74.
    Vilhena LC, Marti CL, Imberger J (2013) The importance of nonlinear internal waves in a deep subalpine lake: Lake Iseo, Italy. Limnol Oceanogr 58(5):1871–1891.  https://doi.org/10.4319/lo.2013.58.5.1871 CrossRefGoogle Scholar
  75. 75.
    von Kármán T (1931) Mechanical similitude and turbulence. Technical report, Technical memorandum, Report No 611. NACA, Washington D.CGoogle Scholar
  76. 76.
    Wain DJ, Kohn MS, Scanlon JA, Rehmann CR (2013) Internal wave-driven transport of fluid away from the boundary of a lake. Limnol Oceanogr 58(2):429–442.  https://doi.org/10.4319/lo.2013.58.2.0429 CrossRefGoogle Scholar
  77. 77.
    Winters KB (2015) Tidally driven mixing and dissipation in the stratified boundary layer above steep submarine topography. Geophys Res Lett 42(17):7123–7130.  https://doi.org/10.1002/2015GL064676 CrossRefGoogle Scholar
  78. 78.
    Wüest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Annu Rev Fluid Mech 35(1):373–412.  https://doi.org/10.1146/annurev.fluid.35.101101.161220 CrossRefGoogle Scholar
  79. 79.
    Wüest A, Piepke G, Van Senden DC (2000) Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters. Limnol Oceanogr 45(6):1388–1400.  https://doi.org/10.4319/lo.2000.45.6.1388 CrossRefGoogle Scholar
  80. 80.
    Yuksel-Ozan A, Constantinescu G, Nepf H (2016) Free-surface gravity currents propagating in an open channel containing a porous layer at the free surface. J Fluid Mech 809:601–627.  https://doi.org/10.1017/jfm.2016.698 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Hugo N. Ulloa
    • 1
    Email author
  • George Constantinescu
    • 2
  • Kyoungsik Chang
    • 3
  • Daniel Horna-Munoz
    • 2
    • 4
  • Oscar Sepúlveda Steiner
    • 1
  • Damien Bouffard
    • 5
  • Alfred Wüest
    • 1
    • 5
  1. 1.Physics of Aquatic Systems Laboratory, Margaretha Kamprad ChairÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Civil and Environmental Engineering, IIHR-Hydroscience and EngineeringThe University of IowaIowa CityUSA
  3. 3.School of Mechanical EngineeringUniversity of UlsanUlsanSouth Korea
  4. 4.Environmental Engineering Department, Centro de Investigación y Tecnología del Agua (CITA)Universidad de Ingeniería y Tecnología (UTEC)Barranco, LimaPeru
  5. 5.Surface Waters - Research and ManagementEawag, Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland

Personalised recommendations