Skip to main content

Advertisement

Log in

Hydrodynamics of a periodically wind-forced small and narrow stratified basin: a large-eddy simulation experiment

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

We report novel results of a numerical experiment designed for examining the basin-scale hydrodynamics that control the mass, momentum, and energy distribution in a daily wind-forced, small thermally-stratified basin. For this purpose, the 3-D Boussinesq equations of motion were numerically solved using large-eddy simulation (LES) in a simplified (trapezoidal) stratified basin to compute the flow driven by a periodic wind shear stress working at the free surface along the principal axis. The domain and flow parameters of the LES experiment were chosen based on the conditions observed during summer in Lake Alpnach, Switzerland. We examine the diurnal circulation once the flow becomes quasi-periodic. First, the LES results show good agreement with available observations of internal seiching, boundary layer currents, vertical distribution of kinetic energy dissipation and effective diffusivity. Second, we investigated the wind-driven baroclinic cross-shore exchange. Results reveal that a near-resonant regime, arising from the coupling of the periodic wind-forcing (\(T=24\) h) and the V2H1 basin-scale internal seiche (\(T_{{\mathrm{V2H1}}}\approx 24\) h), leads to an active cross-shore circulation that can fully renew near-bottom waters at diurnal scale. Finally, we estimated the bulk mixing efficiency, \(\varGamma\), of relevant zones, finding high spatial variability both for the turbulence intensity and the rate of mixing (\(10^{-3}\le \varGamma \le 10^{-1}\)). In particular, significant temporal variability along the slopes of the basin was controlled by the periodic along-slope currents resulting from the V2H1 internal seiche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Adapted from Münnich et al. [41] and Lorke et al. [32]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Antenucci JP, Imberger J (2001) Energetics of long internal gravity waves in large lakes. Limnol Oceanogr 46(7):1760–1773. https://doi.org/10.4319/lo.2001.46.7.1760

    Article  Google Scholar 

  2. Appt J, Imberger J, Kobus H (2004) Basin-scale motion in stratified upper Lake constance. Limnol Oceanogr 4(4):919–933. https://doi.org/10.4319/lo.2004.49.4.0919

    Article  Google Scholar 

  3. Becherer JK, Umlauf L (2011) Boundary mixing in lakes: 1. Modeling the effect of shear-induced convection. J Geophys Res 116:C10017. https://doi.org/10.1029/2011JC007119

    Article  Google Scholar 

  4. Bendat J, Piersol A (2000) Random data. Wiley, New York. https://doi.org/10.1002/9781118032428

    Google Scholar 

  5. Boegman L, Ivey GN, Imberger J (2005) The degeneration of internal waves in lakes with sloping topography. Limnol Oceanogr 50(5):1620–1637. https://doi.org/10.4319/lo.2005.50.5.1620

    Article  Google Scholar 

  6. Boehrer B, Schultze M (2008) Stratification of lakes. Rev Geophys 46(2):RG2005. https://doi.org/10.1029/2006RG000210

    Article  Google Scholar 

  7. Borden Z, Meiburg E, Constantinescu G (2012) Internal bores: an improved model via a detailed analysis of the energy budget. J Fluid Mech 703:279–314. https://doi.org/10.1017/jfm.2012.213

    Article  Google Scholar 

  8. Bouffard D, Boegman L (2013) A diapycnal diffusivity model for stratified environmental flows. Dyn Atmos Oceans 61–62:14–34. https://doi.org/10.1016/j.dynatmoce.2013.02.002

    Article  Google Scholar 

  9. Bouffard D, Boegman L, Rao YR (2012) Poincaré wave-induced mixing in a large lake. Limnol Oceanogr 57(4):1201–1216. https://doi.org/10.4319/lo.2012.57.4.1201

    Article  Google Scholar 

  10. Chang K, Constantinescu G, Park SO (2006) Analysis of the flow and mass transfer processes for the incompressible flow past an open cavity with a laminar and a fully turbulent incoming boundary layer. J Fluid Mech 561:113–145. https://doi.org/10.1017/S0022112006000735

    Article  Google Scholar 

  11. Chang K, Constantinescu G, Park SO (2007) Purging of a neutrally buoyant or a dense miscible contaminant from a rectangular cavity. II: case of an incoming fully turbulent overflow. J Hydraul Eng 133(4):373–385. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:4(373)

    Article  Google Scholar 

  12. Csanady GT (1982) On the structure of transient upwelling events. J Phys Oceanogr 12(1):84–96. https://doi.org/10.1175/1520-0485(1982)012\(<\)0084:OTSOTU\(>\)2.0.CO;2

  13. de la Fuente A, Shimizu K, Niño Y, Imberger J (2010) Nonlinear and weakly nonhydrostatic inviscid evolution of internal gravitational basin-scale waves in a large, deep lake: lake constance. J Geophys Res Ocean. https://doi.org/10.1029/2009JC005839

  14. Dittko KA, Kirkpatrick MP, Armfield SW (2013) Large eddy simulation of complex sidearms subject to solar radiation and surface cooling. Water Res 47(14):4918–4927. https://doi.org/10.1016/j.watres.2013.05.045

    Article  Google Scholar 

  15. Dorostkar A, Boegman L (2012) Internal hydraulic jumps in a long narrow lake. Limnol Oceanogr 58(1):153–172. https://doi.org/10.4319/lo.2013.58.1.0153

    Article  Google Scholar 

  16. Dorostkar A, Boegman L, Pollard A (2017) Three-dimensional simulation of high-frequency nonlinear internal wave dynamics in Cayuga Lake. J Geophys Res Oceans 122(3):2183–2204. https://doi.org/10.1002/2016JC011862

    Article  Google Scholar 

  17. Farrow DE (2013) Periodically driven circulation near the shore of a lake. Environ Fluid Mech 13(3):243–255. https://doi.org/10.1007/s10652-012-9261-4

    Article  Google Scholar 

  18. Fricker PD, Nepf HM (2000) Bathymetry, stratification, and internal seiche structure. J Geophys Res 105(C6):14237–14251. https://doi.org/10.1029/2000JC900060

    Article  Google Scholar 

  19. Gloor M, Wüest A, Imboden DM (2000) Dynamics of mixed bottom boundary layers and its implications for diapycnal transport in a stratified, natural water basin. J Geophys Res Oceans 105(C4):8629–8646. https://doi.org/10.1029/1999JC900303

    Article  Google Scholar 

  20. Goudsmit GH, Peeters F, Gloor M, Wüest A (1997) Boundary versus internal diapycnal mixing in stratified natural waters. J Geophys Res Oceans 102(C13):27903–27914. https://doi.org/10.1029/97JC01861

    Article  Google Scholar 

  21. Henderson SM (2016) Turbulent production in an internal wave bottom boundary layer maintained by a vertically propagating seiche. J Geophys Res Oceans 121(4):2481–2498. https://doi.org/10.1002/2015JC011071

    Article  Google Scholar 

  22. Hodges BR, Imberger J, Saggio A, Winters KB (2000) Modeling basin-scale internal waves in a stratified lake. Limnol Oceanogr 45(7):1603–1620. https://doi.org/10.4319/lo.2000.45.7.1603

    Article  Google Scholar 

  23. Hodges BR, Laval B, Wadzuk BM (2006) Numerical error assessment and a temporal horizon for internal waves in a hydrostatic model. Ocean Modell 13(1):44–64. https://doi.org/10.1016/j.ocemod.2005.09.005

    Article  Google Scholar 

  24. Hondzo M, Haider Z (2004) Boundary mixing in a small stratified lake. Water Resour Res. https://doi.org/10.1029/2002WR001851

  25. Howard LN (1961) Note on a paper of John W Miles. J Fluid Mech 10(04):509–512. https://doi.org/10.1017/S0022112061000317

    Article  Google Scholar 

  26. Hutter K, Salvadè G, Spinedi C, Zamboni F, Bäuerle E (1991) Large scale water movements in lakes. Aquat Sci 53(2):100–135. https://doi.org/10.1007/BF00877057

    Article  Google Scholar 

  27. Ivey GN, Winters KB, Koseff JR (2008) Density stratification, turbulence, but how much mixing? Annu Rev Fluid Mech 40(1):169–84. https://doi.org/10.1146/annurev.fluid.39.050905.110314

    Article  Google Scholar 

  28. Keylock C, Hardy R, Parsons D, Ferguson R, Lane S, Richards K (2005) The theoretical foundations and potential for large-eddy simulation (LES) in fluvial geomorphic and sedimentological research. Earth Sci Rev 71(3–4):271–304. https://doi.org/10.1016/j.earscirev.2005.03.001

    Article  Google Scholar 

  29. Keylock C, Constantinescu G, Hardy R (2012) The application of computational fluid dynamics to natural river channels: eddy resolving versus mean flow approaches. Geomorphology 179:1–20. https://doi.org/10.1016/j.geomorph.2012.09.006

    Article  Google Scholar 

  30. Lorke A (2007) Boundary mixing in the thermocline of a large lake. J Geophys Res 112:C09019. https://doi.org/10.1029/2006JC004008

    Article  Google Scholar 

  31. Lorke A, Umlauf L, Jonas T, Wüest A (2002) Dynamics of turbulence in low-speed oscillating bottom-boundary layers of stratified basins. Environ Fluid Mech 2(4):291–313. https://doi.org/10.1023/A:1020450729821

    Article  Google Scholar 

  32. Lorke A, Peeters F, Wüest A (2005) Shear-induced convective mixing in bottom boundary layers on slopes. Limnol Oceanogr 50(5):1612–1619. https://doi.org/10.4319/lo.2005.50.5.1612

    Article  Google Scholar 

  33. Lorrai C, Umlauf L, Becherer JK, Lorke A, Wüest A (2011) Boundary mixing in lakes: 2. Combined effects of shear- and convectively induced turbulence on basin-scale mixing. J Geophys Res 116:C10018. https://doi.org/10.1029/2011JC007121

    Article  Google Scholar 

  34. Maas LRM, Lam FPA (1995) Geometric focusing of internal waves. J Fluid Mech 300:1–41. https://doi.org/10.1017/S0022112095003582

    Article  Google Scholar 

  35. Mahesh K, Constantinescu G, Moin P (2004) A numerical method for large-eddy simulation in complex geometries. J Comput Phys 197(1):215–240. https://doi.org/10.1016/j.jcp.2003.11.031

    Article  Google Scholar 

  36. Mashayek A, Salehipour H, Bouffard D, Caulfield CP, Ferrari R, Nikurashin M, Peltier WR, Smyth WD (2017) Efficiency of turbulent mixing in the abyssal ocean circulation. Geophys Res Lett 44(12):6296–6306. https://doi.org/10.1002/2016GL072452

    Article  Google Scholar 

  37. Miles JW (1961) On the stability of heterogeneous shear flows. J Fluid Mech 10(04):496–508. https://doi.org/10.1017/S0022112061000305

    Article  Google Scholar 

  38. Monismith SG (1985) Wind-forced motions in stratified lakes and their effect on mixed-layer shear. Limnol Oceanogr 30(4):771–783. https://doi.org/10.4319/lo.1985.30.4.0771

    Article  Google Scholar 

  39. Monismith SG, Imberger J, Morison ML (1990) Convective motions in the sidearm of a small reservoir. Limnol Oceanogr 35(8):1676–1702. https://doi.org/10.4319/lo.1990.35.8.1676

    Article  Google Scholar 

  40. Monsen NE, Cloern JE, Lucas LV, Monismith SG (2002) A comment on the use of flushing time, residence time, and age as transport time scales. Limnol Oceanogr 47(5):1545–1553. https://doi.org/10.4319/lo.2002.47.5.1545

    Article  Google Scholar 

  41. Münnich M, Wüest A, Imboden DM (1992) Observations of the second vertical mode of the internal seiche in an alpine lake. Limnol Oceanogr 37(8):1705–1719. https://doi.org/10.4319/lo.1992.37.8.1705

    Article  Google Scholar 

  42. Ooi SK, Constantinescu G, Weber L (2007) A numerical study of intrusive compositional gravity currents. Phys Fluids 19(7):076602. https://doi.org/10.1063/1.2750672

    Article  Google Scholar 

  43. Ooi SK, Constantinescu G, Weber L (2009) Numerical simulations of lock-exchange compositional gravity current. J Fluid Mech 635:361–388. https://doi.org/10.1017/S0022112009007599

    Article  Google Scholar 

  44. Osborn TR (1980) Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10(1):83–89. https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2

    Article  Google Scholar 

  45. Petronio A, Roman F, Nasello C, Armenio V (2013) Large eddy simulation model for wind-driven sea circulation in coastal areas. Nonlinear Process Geophys 20(6):1095–1112. https://doi.org/10.5194/npg-20-1095-2013

    Article  Google Scholar 

  46. Pham HT, Sarkar S (2010) Transport and mixing of density in a continuously stratified shear layer. J Turbul 11:N24. https://doi.org/10.1080/14685248.2010.493560

    Article  Google Scholar 

  47. Pierce CD, Moin P (2001) Progress-variable approach for large-eddy simulation of turbulent combustion. PhD thesis, Mechanical Engineering Department Report, TF-80, Standford University

  48. Pierce CD, Moin P (2004) Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J Fluid Mech 504:73–97. https://doi.org/10.1017/S0022112004008213

    Article  Google Scholar 

  49. Piomelli U (2014) Large eddy simulations in 2030 and beyond. Philos Trans R Soc A 372(2022):20130320. https://doi.org/10.1098/rsta.2013.0320

    Article  Google Scholar 

  50. Piomelli U, Chasnov JR (1996) Large-eddy simulations: theory and applications. Springer, Netherlands. https://doi.org/10.1007/978-94-015-8666-5_7

    Google Scholar 

  51. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511840531

    Book  Google Scholar 

  52. Preusse M, Peeters F, Lorke A (2010) Internal waves and the generation of turbulence in the thermocline of a large lake. Limnol Oceanogr 55(6):2353–2365. https://doi.org/10.4319/lo.2010.55.6.2353

    Article  Google Scholar 

  53. Rodi CGSTW (2013) Large-eddy simulation in hydraulics. CRC Press, London

    Book  Google Scholar 

  54. Roman F, Stipcich G, Armenio V, Inghilesi R, Corsini S (2010) Large eddy simulation of mixing in coastal areas. Int J Heat Fluid Flow 31(3):327–341. https://doi.org/10.1016/j.ijheatfluidflow.2010.02.006

    Article  Google Scholar 

  55. Rozas C, de la Fuente A, Ulloa H, Davies P, Niño Y (2014) Quantifying the effect of wind on internal wave resonance in Lake Villarrica, Chile. Environ Fluid Mech 14(4):849–871. https://doi.org/10.1007/s10652-013-9329-9

    Google Scholar 

  56. Santo MA, Toffolon M, Zanier G, Giovannini L, Armenio V (2017) Large eddy simulation (LES) of wind-driven circulation in a peri-alpine lake: detection of turbulent structures and implications of a complex surrounding orography. J Geophys Res Ocean 122(6):4704–4722. https://doi.org/10.1002/2016JC012284

    Article  Google Scholar 

  57. Scalo C, Boegman L, Piomelli U (2013) Large-eddy simulation and low-order modeling of sediment-oxygen uptake in a transitional oscillatory flow. J Geophys Res Oceans 118(4):1926–1939. https://doi.org/10.1002/jgrc.20113

    Article  Google Scholar 

  58. Shih LH, Koseff JR, Ivey GN, Ferziger JH (2005) Parameterization of turbulent fluxes and scales using homogeneous shared stably stratified turbulence simulations. J Fluid Mech 525:193–214. https://doi.org/10.1017/S0022112004002587

    Article  Google Scholar 

  59. Shintani T, de la Fuente A, Niño Y, Imberger J (2010) Generalizations of the Wedderburn number: parameterizing upwelling in stratified lakes. Limnol Oceanogr 55(3):1377–1389. https://doi.org/10.4319/lo.2010.55.3.1377

    Article  Google Scholar 

  60. Simpson JH, Wiles PJ, Lincoln BJ (2011) Internal seiche modes and bottom boundary-layer dissipation in a temperate lake from acoustic measurements. Limnol Oceanogr 56(5):1893–1906. https://doi.org/10.4319/lo.2011.56.5.1893

    Article  Google Scholar 

  61. Sommer T, Danza F, Berg J, Sengupta A, Constantinescu G, Tokyay T, Bürgmann H, Dressler Y, Sepúlveda Steiner O, Schubert CJ, Tonolla M, Wüest A (2017) Bacteria-induced mixing in natural waters. Geophys Res Lett 44(18):9424–9432. https://doi.org/10.1002/2017GL074868

    Article  Google Scholar 

  62. Spigel RH, Imberger J (1980) The classification of mixed-layer dynamics of lakes of small to medium size. J Phys Oceanogr 10(7):1104–1121. https://doi.org/10.1175/1520-0485(1980)010<1104:TCOMLD>2.0.CO;2

    Article  Google Scholar 

  63. Steenhauer K, Tokyay T, Constantinescu G (2017) Dynamics and structure of planar gravity currents propagating down an inclined surface. Phys Fluids 29(3):036604. https://doi.org/10.1063/1.4979063

    Article  Google Scholar 

  64. Taylor JR, Sarkar S (2008) Stratification effects in a bottom Ekman layer. J Phys Oceanogr 38(11):2535–2555. https://doi.org/10.1175/2008JPO3942.1

    Article  Google Scholar 

  65. Tokyay T, Constantinescu G (2015) The effects of a submerged non-erodible triangular obstacle on bottom propagating gravity currents. Phys Fluids 27(5):056601. https://doi.org/10.1063/1.4919384

    Article  Google Scholar 

  66. Tokyay T, Constantinescu G, Meiburg E (2011) Lock-exchange gravity currents with a high volume of release propagating over a periodic array of obstacles. J Fluid Mech 672:570–605. https://doi.org/10.1017/S0022112010006312

    Article  Google Scholar 

  67. Tokyay T, Constantinescu G, Meiburg E (2012) Tail structure and bed friction velocity distribution of gravity currents propagating over an array of obstacles. J Fluid Mech 694:252–291. https://doi.org/10.1017/jfm.2011.542

    Article  Google Scholar 

  68. Tokyay T, Constantinescu G, Meiburg E (2014) Lock-exchange gravity currents with a low volume of release propagating over an array of obstacles. J Geophys Res Oceans 119(5):2752–2768. https://doi.org/10.1002/2013JC009721

    Article  Google Scholar 

  69. Ulloa HN, Winters KB, de la Fuente A, Niño Y (2015) Degeneration of internal Kelvin waves in a continuous two-layer stratification. J Fluid Mech 777:68–96. https://doi.org/10.1017/jfm.2015.311

    Article  Google Scholar 

  70. Ulloa HN, Davis KA, Monismith SG, Pawlak G (2018) Temporal variability in thermally-driven cross-shore exchange: the role of semidiurnal tides. J Phys Oceanogr 48(7):1513–1531. https://doi.org/10.1175/JPO-D-17-0257.1

    Article  Google Scholar 

  71. Valipour R, Bouffard D, Boegman L (2015) Parameterization of bottom mixed layer and logarithmic layer heights in central Lake Erie. J Great Lakes Res 41(3):707–718. https://doi.org/10.1016/j.jglr.2015.06.010

    Article  Google Scholar 

  72. Valipour R, Boegman L, Bouffard D, Rao YR (2017) Sediment resuspension mechanisms and their contributions to high-turbidity events in a large lake. Limnol Oceanogr 62(3):1045–1065. https://doi.org/10.1002/lno.10485

    Article  Google Scholar 

  73. Vidal J, Casamitjana X, Colomer J, Serra T (2005) The internal wave field in Sau reservoir: observation and modeling of a third vertical mode. Limnol Oceanogr 50(4):1326–1333. https://doi.org/10.4319/lo.2005.50.4.1326

    Article  Google Scholar 

  74. Vilhena LC, Marti CL, Imberger J (2013) The importance of nonlinear internal waves in a deep subalpine lake: Lake Iseo, Italy. Limnol Oceanogr 58(5):1871–1891. https://doi.org/10.4319/lo.2013.58.5.1871

    Article  Google Scholar 

  75. von Kármán T (1931) Mechanical similitude and turbulence. Technical report, Technical memorandum, Report No 611. NACA, Washington D.C

  76. Wain DJ, Kohn MS, Scanlon JA, Rehmann CR (2013) Internal wave-driven transport of fluid away from the boundary of a lake. Limnol Oceanogr 58(2):429–442. https://doi.org/10.4319/lo.2013.58.2.0429

    Article  Google Scholar 

  77. Winters KB (2015) Tidally driven mixing and dissipation in the stratified boundary layer above steep submarine topography. Geophys Res Lett 42(17):7123–7130. https://doi.org/10.1002/2015GL064676

    Article  Google Scholar 

  78. Wüest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Annu Rev Fluid Mech 35(1):373–412. https://doi.org/10.1146/annurev.fluid.35.101101.161220

    Article  Google Scholar 

  79. Wüest A, Piepke G, Van Senden DC (2000) Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters. Limnol Oceanogr 45(6):1388–1400. https://doi.org/10.4319/lo.2000.45.6.1388

    Article  Google Scholar 

  80. Yuksel-Ozan A, Constantinescu G, Nepf H (2016) Free-surface gravity currents propagating in an open channel containing a porous layer at the free surface. J Fluid Mech 809:601–627. https://doi.org/10.1017/jfm.2016.698

    Article  Google Scholar 

Download references

Acknowledgements

This work has been developed during the sabbatical leave of George Constantinescu at EPFL. We acknowledge the financial contribution by the ENAC-EPFL Visiting Professor Program (Grant Number CF 0233). Discussions with Kraig B. Winters and Leo Maas on BBL dynamics and resonance regimes in stratified environments are gratefully acknowledged. We thank Javier Vidal for providing the Münnich’s model that resolve the normal modes in an arbitrary 2-D stratified basin. We also thank Tomás Trewhela for his useful observations and criticisms on this work. The manuscript also benefited from feedback from two anonymous reviewers. Additional information on the model can be obtained by contacting G. Constantinescu at sconstan@engineering.uiowa.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo N. Ulloa.

Appendices

Appendix 1: Observations in Lake Alpnach

Lakes that count with reliable hydrodynamic observations are excellent candidates for assessing the performance of numerical models. Simultaneously, numerical models are excellent tools to extend the understanding of these systems via exploratory numerical experiments. Lake Alpnach (Switzerland) is an extensively investigated system since late 80’s and is considered a real-scale laboratory to examine hydrodynamics and biogeochemical processes in lakes.

Fig. 14
figure 14

Field observations in Lake Alpnach. a Streamwise component of wind. b Streamwise velocity component (m s−1) from ADCP at 31 m depth (adapted from Lorrai et al. [33]). c Arithmetic average of energy dissipation rate, \(\varepsilon\), as a function of depth. \(\epsilon\) was estimated from downward (circle marks) and upward (square marks) microstructure casts (adapted from Wüest et al. [79]). d Vertical eddy diffusivity, \(K_{\rho }\), as a function of depth (adapted from Gloor et al. [19])

Figure 14 illustrates field observations of Lake Alpnach from different previous studies. Figure 14a, b shows the wind speed, \(U_{10}\), and velocity component, u, along the main lake axis (streamwise axis in our coordinate system). Winds show a diurnal structure while the streamwise velocity component has a robust baroclinic signature compound by three- and four-layer patterns with maximum/minimum values of order \(u\approx\, \pm\, 0.05\) m s−1. This flow structure has been well-reproduced via a realistic RANS simulation by Lorrai et al. [33] and by our idealized LES experiment (see Fig. 3). Figure 14c, d shows the average kinematic energy dissipation rate, \(\varepsilon\), as a function of depth based on temperature microstructure profiles [79] and the estimation of the vertical eddy diffusivity, \(K_{\rho }\), in the interior basin based on tracer dispersion tracking [19, 20], respectively. The laterally/time-averaged energy dissipation and vertical eddy diffusivity estimated from our numerical simulations (Fig. 12b, h) show reasonable agreement not only in the vertical structure but also in magnitudes.

Appendix 2: Normal modes in a stratified trapezoidal basin

The oscillatory normal modes and their natural frequencies are constrained to the stratification, boundary conditions, and the basin topography. Here, we investigate the normal modes of our system for classifying the observed internal wave field. To do so, we solve the eigenvalue problem for the 2-D trapezoidal basin considering long wave approximation [18, 73]:

$$\begin{aligned} \frac{\partial ^{4}\psi }{\partial ^{2}t \partial ^{2}z} + N^{2}_{*}(z)\frac{\partial ^{2} \psi }{\partial x^{2}} =0, \end{aligned}$$
(16)

where \(\psi\) is the stream function. The streamwise and the vertical velocity components are determined by \(u=-\partial \psi /\partial z\) and \(w=\partial \psi /\partial x\), respectively. In this case, \(N_{*}\) is the background stratification profile at the beginning of the ninth period (Fig. 4a). To resolve (16), we further assume an inviscid fluid and null normal velocities at the boundaries. We look for modal structures of the form \(\psi =\varPhi (x,z)e^{i\left( \omega t + \sigma \right) }\), where \(\omega\) is the angular frequency of the mode and \(\sigma\) an arbitrary wave phase. Then, Eq. (16) is reduced to

$$\begin{aligned} \frac{\partial ^{2}\varPhi }{\partial ^{2}x} - \frac{\omega ^{2}}{N^{2}_{*}(z)}\frac{\partial ^{2} \varPhi }{\partial z^{2}} =0. \end{aligned}$$
(17)

Equation (17) can be formulated as a generalized eigenvalue problem of the type \(\mathbf A \varPhi = \omega ^{2}{} \mathbf B \varPhi\), where \(\mathbf A\) is a matrix characterized by the discretization on the streamwise axis x and \(\mathbf B\) is a matrix characterized by the discretization on the vertical axis z and \(N^{2}_{*}(z)\). Resolving the above eigenvalue problem provides the 2-D spatial structure of the normal modes, \(\varPhi (x,z)\), and their temporal structure established by \(\omega\). Results are discussed in Sect. 3.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulloa, H.N., Constantinescu, G., Chang, K. et al. Hydrodynamics of a periodically wind-forced small and narrow stratified basin: a large-eddy simulation experiment. Environ Fluid Mech 19, 667–698 (2019). https://doi.org/10.1007/s10652-018-9645-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-018-9645-1

Keywords

Navigation