Skip to main content
Log in

Flow structure of unconfined turbidity currents interacting with an obstacle

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Driven by a growing importance to engineered structures, investigating the flow characteristics of turbidity currents interacting with a basal obstruction has become popular over the last three decades. However, research has focused on confined studies or numerical simulations, whereas in situ turbidity currents are typically unconfined. The present study investigates experimentally the velocity and turbulence structure of an unconfined turbidity current, in the immediate regions surrounding a rectangular obstacle. Initial density of the current, and substrate condition is varied. Through a novel technique of installing ultrasonic probes within the obstacle, the presence of a velocity recirculation region immediately upstream and downstream of the obstacle is revealed and confirmed with high-resolution imagery. This was found to be comparable to previous confined studies, suggesting that stream-wise velocity profile structure is somewhat independent of confinement. The obstacle was found to reduce velocity and turbulence intensity maxima downstream of the obstacle when compared with unobstructed tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Meiburg E, Kneller B (2010) Turbidity currents and their deposits. Annu Rev Fluid Mech 42(1):135–156. https://doi.org/10.1146/annurev-fluid-121108-145618

    Article  Google Scholar 

  2. Xu JP, Noble MA, Rosenfeld LK (2004) In-situ measurements of velocity structure within turbidity currents. Geophys Res Lett 31(9):L09311. https://doi.org/10.1029/2004GL019718

    Article  Google Scholar 

  3. Heezen BC, Ewing M (1952) Turbidity currents and submarine slumps, and 1929 grand banks earthquake. Am J Sci 250(12):849–873. https://doi.org/10.2475/ajs.250.12.849

    Article  Google Scholar 

  4. Krause DC, White WC, Piper DJW, Heezen BC (1970) Turbidity currents and cable breaks in the western New Britain Trench. Geol Soc Am Bull 81(7):2153–2160. https://doi.org/10.1130/0016-7606(1970)81%5b2153:TCACBI%5d2.0.CO;2

    Article  Google Scholar 

  5. Hsu SK, Kuo J, Lo CL, Tsai CH, Doo WB, Ku CY, Sibuet JC (2008) Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. Terr Atmos Ocean Sci 19(6):767–772. https://doi.org/10.3319/TAO.2008.19.6.767(PT)

    Article  Google Scholar 

  6. Carter L, Milliman JD, Talling PJ, Gavey R, Wynn RB (2012) Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan. Geophys Res Lett 39(12):L12603. https://doi.org/10.1029/2012GL051172

    Article  Google Scholar 

  7. Cattaneo A, Babonneau N, Ratzov G, Dan-Unterseh G, Yelles K, Bracène R, Mercier de Lépinay B, Boudiaf A, Déverchère J (2012) Searching for the seafloor signature of the 21 May 2003 Boumerdès earthquake offshore central Algeria. Nat Hazards Earth Syst Sci 12(7):2159–2172. https://doi.org/10.5194/nhess-12-2159-2012

    Article  Google Scholar 

  8. Pope EL, Talling PJ, Carter L (2017) Which earthquakes trigger damaging submarine mass movements: insights from a global record of submarine cable breaks? Mar Geol 384:131–146. https://doi.org/10.1016/j.margeo.2016.01.009

    Article  Google Scholar 

  9. Bruschi R, Bughi S, Spinazzè M, Torselletti E, Vitali L (2006) Impact of debris flows and turbidity currents on seafloor structures. Norw J Geol 86(3):317–336

    Google Scholar 

  10. Testik FY, Yilmaz NA (2015) Anatomy and propagation dynamics of continuous-flux release bottom gravity currents through emergent aquatic vegetation. Phys Fluids 27(5):056603. https://doi.org/10.1063/1.4919783

    Article  Google Scholar 

  11. Ho H-C, Lin Y-T (2015) Gravity currents over a rigid and emergent vegetated slope. Adv Water Resour 76:72–80. https://doi.org/10.1016/j.advwatres.2014.12.005

    Article  Google Scholar 

  12. Schleiss AJ, Franca MJ, Juez C, De Cesare G (2016) Reservoir sedimentation. J Hydraul Res 54(6):595–614. https://doi.org/10.1080/00221686.2016.1225320

    Article  Google Scholar 

  13. Oehy C, De Cesare G, Schleiss AJ (2010) Effect of inclined jet screen on turbidity current. J Hydraul Res 48(1):81–90. https://doi.org/10.1080/00221680903566042

    Article  Google Scholar 

  14. Oehy C, Schleiss AJ (2007) Control of turbidity currents in reservoirs by solid and permeable obstacles. J Hydraul Eng 133(6):637–648. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(637)

    Article  Google Scholar 

  15. Yaghoubi S, Afshin H, Firoozabadi B, Farizan A (2017) Experimental investigation of the effect of inlet concentration on the behavior of turbidity currents in the presence of two consecutive obstacles. J Waterw Port Coast Ocean Eng 143(2):04016018. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000358

    Article  Google Scholar 

  16. Gonzalez-Juez E, Meiburg E (2009) Shallow-water analysis of gravity-current flows past isolated obstacles. J Fluid Mech 635:415–438. https://doi.org/10.1017/S0022112009007678

    Article  Google Scholar 

  17. Gonzalez-Juez E, Meiburg E, Constantinescu G (2009) Gravity currents impinging on bottom-mounted square cylinders: flow fields and associated forces. J Fluid Mech 631:65–102. https://doi.org/10.1017/S0022112009006740

    Article  Google Scholar 

  18. Tokyay T, Constantinescu G, Gonzalez-Juez E, Meiburg E (2011) Gravity currents propagating over periodic arrays of blunt obstacles: effect of the obstacle size. J Fluid Struct 27(5–6):798–806. https://doi.org/10.1016/j.jfluidstructs.2011.01.006

    Article  Google Scholar 

  19. Tokyay T, Constantinescu G, Meiburg E (2012) Tail structure and bed friction velocity distribution of gravity currents propagating over an array of obstacles. J Fluid Mech 694:252–291. https://doi.org/10.1017/jfm.2011.542

    Article  Google Scholar 

  20. Nasr-Azadani MM, Meiburg E (2014) Turbidity currents interacting with three-dimensional seafloor topography. J Fluid Mech 745:409–443. https://doi.org/10.1017/jfm.2014.47

    Article  Google Scholar 

  21. Tokyay T, Constantinescu G (2015) The effects of a submerged non-erodible triangular obstacle on bottom propagating gravity currents. Phys Fluids 27(5):056601. https://doi.org/10.1063/1.4919384

    Article  Google Scholar 

  22. Altinakar MS, Graf WH, Hopfinger EJ (1996) Flow structure in turbidity currents. J Hydraul Res 34(5):713–718. https://doi.org/10.1080/00221689609498467

    Article  Google Scholar 

  23. Kneller B, Bennett S, McCaffrey WD (1999) Velocity structure, turbulence and fluid stresses in experimental gravity currents. J Geophys Res Oceans 104(C3):5381–5391. https://doi.org/10.1029/1998JC900077

    Article  Google Scholar 

  24. Choux CMA, Baas JH, McCaffrey WD, Haughton PDW (2005) Comparison of spatio-temporal evolution of experimental particulate gravity flows at two different initial concentrations, based on velocity, grain size and density data. Sediment Geol 179(1–2):49–69. https://doi.org/10.1016/j.sedgeo.2005.04.010

    Article  Google Scholar 

  25. Oshaghi MR, Afshin H, Firoozabadi B (2013) Experimental investigation of the effect of obstacles on the behavior of turbidity currents. Can J Civil Eng 40(4):343–352. https://doi.org/10.1139/cjce-2012-0429

    Article  Google Scholar 

  26. Eggenhuisen JT, McCaffrey WD (2012) The vertical turbulence structure of experimental turbidity currents encountering basal obstructions: implications for vertical suspended sediment distribution in non-equilibrium currents. Sedimentology 59(3):1101–1120. https://doi.org/10.1111/j.1365-3091.2011.01297.x

    Article  Google Scholar 

  27. Jung JH, Yoon HS (2016) Effect of scour depth on flow around circular cylinder in gravity current. Ocean Eng 117:78–87. https://doi.org/10.1016/j.oceaneng.2016.03.025

    Article  Google Scholar 

  28. Bhaganagar K (2017) Role of head of turbulent 3-D density currents in mixing during slumping regime. Phys Fluids 29(2):020703. https://doi.org/10.1063/1.4974353

    Article  Google Scholar 

  29. La Rocca M, Adduce C, Sciortino G, Pinzon AB (2008) Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom. Phys Fluids 20(10):106603. https://doi.org/10.1063/1.3002381

    Article  Google Scholar 

  30. Lombardi V, Adduce C, La Rocca M (2017) Unconfined lock-exchange gravity currents with variable lock width: laboratory experiments and shallow-water simulations. J Hydraul Res. https://doi.org/10.1080/00221686.2017.1372817

    Article  Google Scholar 

  31. Baas JH, Van Kesteren W, Postma G (2004) Deposits of depletive high-density turbidity currents: a flume analogue of bed geometry, structure and texture. Sedimentology 51(5):1053–1088. https://doi.org/10.1111/j.1365-3091.2004.00660.x

    Article  Google Scholar 

  32. Nogueira HIS, Adduce C, Alves E, Franca MJ (2013) Analysis of lock-exchange gravity currents over smooth and rough beds. J Hydraul Res 51(4):417–431. https://doi.org/10.1080/00221686.2013.798363

    Article  Google Scholar 

  33. Cenedese C, Nokes R, Hyatt J (2016) Lock-exchange gravity currents over rough bottoms. Environ Fluid Mech. https://doi.org/10.1007/s10652-016-9501-0

    Article  Google Scholar 

  34. Varjavand P, Ghomeshi M, Dalir AH, Farsadizadeh D, Gorgij AD (2015) Experimental observation of saline underflows and turbidity currents, flowing over rough beds. Can J Civil Eng 42(11):834–844. https://doi.org/10.1139/cjce-2014-0537

    Article  Google Scholar 

  35. Alexander J, Morris SA (1994) Observations on experimental, nonchannelized, high-concentration turbidity currents and variations in deposits around obstacles. J Sediment Res 64(4a):899–909. https://doi.org/10.1306/d4267f00-2b26-11d7-8648000102c1865d

    Article  Google Scholar 

  36. Morris SA, Alexander J (2003) Changes in flow direction at a point caused by obstacles during passage of a density current. J Sediment Res 73(4):621–629. https://doi.org/10.1306/112502730621

    Article  Google Scholar 

  37. Choi S-U, Garcia MH (2001) Spreading of gravity plumes on an incline. Coast Eng J 43(4):221. https://doi.org/10.1142/S0578563401000359

    Article  Google Scholar 

  38. Wilson RI, Friedrich H, Stevens C (2017) Image thresholding process for combining photometry with intrusive flow instruments. J Hydraul Res. https://doi.org/10.1080/00221686.2017.1313320

    Article  Google Scholar 

  39. Adduce C, Sciortino G, Proietti S (2012) Gravity currents produced by lock exchanges: experiments and simulations with a two-layer shallow-water model with entrainment. J Hydraul Eng 138(2):111–121. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000484

    Article  Google Scholar 

  40. Nogueira HIS, Adduce C, Alves E, Franca MJ (2014) Dynamics of the head of gravity currents. Environ Fluid Mech 14(2):519–540. https://doi.org/10.1007/s10652-013-9315-2

    Article  Google Scholar 

  41. Ottolenghi L, Adduce C, Inghilesi R, Armenio V, Roman F (2016) Entrainment and mixing in unsteady gravity currents. J Hydraul Res. https://doi.org/10.1080/00221686.2016.1174961

    Article  Google Scholar 

  42. Jacobson MR, Testik FY (2014) Turbulent entrainment into fluid mud gravity currents. Environ Fluid Mech 14(2):541–563. https://doi.org/10.1007/s10652-014-9344-5

    Article  Google Scholar 

  43. Keevil GM, Peakall J, Best JL, Amos KJ (2006) Flow structure in sinuous submarine channels: velocity and turbulence structure of an experimental submarine channel. Mar Geol 229(3–4):241–257. https://doi.org/10.1016/j.margeo.2006.03.010

    Article  Google Scholar 

  44. Wilson RI, Friedrich H, Stevens C (2015) Intrusive measurement evaluation for sediment-laden flows interacting with an obstacle. Paper presented at the 36th international IAHR world congress, The Hague, The Netherlands

  45. Gray TE, Alexander J, Leeder MR (2005) Quantifying velocity and turbulence structure in depositing sustained turbidity currents across breaks in slope. Sedimentology 52(3):467–488. https://doi.org/10.1111/j.1365-3091.2005.00705.x

    Article  Google Scholar 

  46. Ellison TH, Turner JS (1959) Turbulent entrainment in stratified flows. J Fluid Mech 6(03):423–448. https://doi.org/10.1017/S0022112059000738

    Article  Google Scholar 

  47. Sequeiros OE, Spinewine B, Garcia MH, Beaubouef RT, Sun T, Parker G (2009) Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. Part I. Documentation of the flow. J Sediment Res 79(8):593–607. https://doi.org/10.2110/jsr.2009.064

    Article  Google Scholar 

  48. Ermanyuk E, Gavrilov N (2005) Interaction of internal gravity current with an obstacle on the channel bottom. J Appl Mech Tech Phys 46(4):489–495. https://doi.org/10.1007/s10808-005-0100-y

    Article  Google Scholar 

  49. Lane-Serff GF, Beal LM, Hadfield TD (1995) Gravity current flow over obstacles. J Fluid Mech 292:39–53. https://doi.org/10.1017/S002211209500142X

    Article  Google Scholar 

  50. Rottman JW, Simpson JE, Hunt JCR, Britter RE (1985) Unsteady gravity current flows over obstacles: some observations and analysis related to the phase II trials. J Hazard Mater 11:325–340. https://doi.org/10.1016/0304-3894(85)85044-5

    Article  Google Scholar 

  51. Wilson RI, Friedrich H, Stevens C (2017) Turbulent entrainment in sediment-laden flows interacting with an obstacle. Phys Fluids 29(3):036603. https://doi.org/10.1063/1.4979067

    Article  Google Scholar 

  52. Baas JH, Best JL (2002) Turbulence modulation in clay-rich sediment-laden flows and some implications for sediment deposition. J Sediment Res 72(3):336–340. https://doi.org/10.1306/120601720336

    Article  Google Scholar 

  53. Kubo Y (2004) Experimental and numerical study of topographic effects on deposition from two-dimensional, particle-driven density currents. Sediment Geol 164(3–4):311–326. https://doi.org/10.1016/j.sedgeo.2003.11.002

    Article  Google Scholar 

  54. Stagnaro M, Bolla Pittaluga M (2014) Velocity and concentration profiles of saline and turbidity currents flowing in a straight channel under quasi-uniform conditions. Earth Surf Dyn 2(1):167–180. https://doi.org/10.5194/esurf-2-167-2014

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Trevor Patrick, Geoff Kirby and Jim Luo for their help in constructing and installing required experimental components.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard I. Wilson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, R.I., Friedrich, H. & Stevens, C. Flow structure of unconfined turbidity currents interacting with an obstacle. Environ Fluid Mech 18, 1571–1594 (2018). https://doi.org/10.1007/s10652-018-9631-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-018-9631-7

Keywords

Navigation